
Access Control to Information in
Pervasive Computing Environments

Urs Hengartner

CMU-CS-05-160

August 2005

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Peter Steenkiste, Chair

Adrian Perrig
Michael K. Reiter

Edward W. Felten, Princeton

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2005 Urs Hengartner

This research was sponsored by the Army Research Office under contract no. DAAD19-02-1-0389, the
US Navy under grant no. N66001992891801, and the US Air Force Research Laboratory under grant no.
F306029910518. The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of any sponsoring insti-
tution, the U.S. government or any other entity.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2005 2. REPORT TYPE

3. DATES COVERED
 00-00-2005 to 00-00-2005

4. TITLE AND SUBTITLE
Access Control to Information in Pervasive Computing Environments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

217

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: Information security, privacy, semantics of information, derivation of in-
formation, context awareness, applied cryptography, identity-based encryption.

Abstract

Pervasive computing envisions a world in which we are surrounded by em-
bedded, networked devices, which gather and share information about people,
such as their location, activity, or even their feelings. Some of this information
is confidential and should be released only to authorized entities. In this thesis,
I show how existing solutions for controlling access to information are not suf-
ficient for pervasive computing. In particular, there are four challenges: First,
there will be many information services, run by different organizations, even
in a single social environment, which makes centralized access control infea-
sible and authorization management difficult. Second, there will be complex
types of information, such as a person’s calendar entry, which could leak other
kinds of information, such as the person’s current location. Third, there will
be services that derive specific information, such as a person’s activity, from
raw information, such as a videostream, and that become attractive targets for
intruders. Fourth, access decisions could be constrained based on confiden-
tial information about an individual’s context and could leak this confidential
information.

This thesis presents a distributed access-control architecture for pervasive
computing that supports complex and derived information and confidential
context-sensitive constraints. Namely, the thesis makes the following contri-
butions: First, I introduce a distributed access-control architecture, in which a
client proves to a service that the client is authorized to access the requested
information. Second, I incorporate the semantics of complex information as
a first-class citizen into this architecture, based oninformation relationships.
Third, I proposederivation-constrained access control, which reduces the in-
fluence of intruders into a service by making the service prove that it is ac-
cessing information on behalf of an authorized client. Fourth, I study the
kinds of information leaks that confidential context-sensitive constraints can
cause, and I introduceaccess-rights graphsandhidden constraintsto address
these leaks. Fifth, I presentobscured proof-of-access descriptions, which al-
low a service to inform a client of the required proof of access without leaking
confidential information being part of this description. Sixth, as an alternative
approach, I introduce an encryption-based access-control architecture for per-
vasive computing, in which a service gives information to any client, but only
in an encrypted form.

iv

Acknowledgments

I would like to thank

my advisor, Peter Steenkiste, for his guidance and support,

my other committee members, Ed Felten, Adrian Perrig, and Mike Reiter, for their feed-
back,

Lujo Bauer, Nick Hopper, and Dawn Song for their input,

Thomas Gross for inviting me to Carnegie Mellon,

Mahim, Mukesh, and Rajesh for their friendship, and

Kate for her love and support.

v

vi

Contents

1 Introduction 1

1.1 Privacy in Pervasive Computing . 1

1.1.1 Diversity in Service Administration 4

1.1.2 Complex Information . 5

1.1.3 Derivation of Information . 6

1.1.4 Confidential Context-Sensitive Constraints 7

1.2 Related Work . 8

1.2.1 Diversity in Service Administration 8

1.2.2 Complex Information . 9

1.2.3 Derivation of Information . 9

1.2.4 Confidential Context-Sensitive Constraints 9

1.3 Thesis Goal . 10

1.4 Contributions . 11

1.5 Guide To The Thesis . 12

2 Design of Access-Control Architecture 15

2.1 Overview . 15

2.2 Access Policies . 16

2.2.1 Properties of Access Policies . 17

2.2.2 Access Rights . 19

2.3 Access-Control Architectures . 21

vii

2.3.1 Centralized Access Control . 21

2.3.2 Service-based Access Control 22

2.3.3 Client-Based Access Control . 22

2.3.4 End-to-End Access Control . 23

2.4 People-Location System . 25

2.4.1 Overview . 25

2.4.2 Access Rights . 25

2.4.3 Distributed Access Control . 28

2.4.4 Lessons . 30

2.5 Access Rights . 32

2.5.1 Information Representation . 32

2.5.2 Formal Model . 35

2.5.3 Implementation . 37

2.6 Distributed Access Control . 38

2.6.1 Access-Rights Storage . 38

2.6.2 Proof Verification . 39

2.6.3 Implementation . 39

2.6.4 Deployment . 40

2.7 Security Model . 41

2.8 Related Work . 42

2.8.1 People-Location Systems . 42

2.8.2 Information-Representation Schemes 43

2.8.3 Access-Control Logics . 44

2.8.4 Trust-Management Systems . 45

2.9 Summary . 45

3 Information Relationships 47

3.1 Overview . 47

3.2 Information Relationships . 49

viii

3.3 Formal Model . 51

3.3.1 Bundling-Based Relationships 52

3.3.2 Combination-Based Relationships 53

3.3.3 Granularity-Based Relationships 54

3.3.4 Example . 55

3.4 Discussion . 56

3.5 Global Information Relationships . 58

3.5.1 Delegation-Based Approach . 58

3.5.2 Naming-Based Approach . 60

3.6 Proof Building . 61

3.6.1 Bundling-Based Relationships 61

3.6.2 Combination-Based Relationships 63

3.6.3 Granularity-Based Relationships 64

3.7 Implementation . 64

3.8 Performance Analysis . 65

3.8.1 Number of Access Rights . 65

3.8.2 Proof-Building Time . 67

3.8.3 Client-Response Time . 69

3.9 Proof-Carrying Authorization . 70

3.9.1 Overview . 71

3.9.2 Bundling-Based Relationships 71

3.9.3 Combination-Based Relationships 73

3.9.4 Granularity-Based Relationships 74

3.9.5 Discussion . 74

3.10 Related Work . 77

3.11 Summary . 78

4 Derivation-Constrained Access Control 81

4.1 Overview . 82

ix

4.2 Background . 83

4.3 Derivation-Constrained Access Control 85

4.3.1 Derivation-Constrained Access Rights 85

4.3.2 Derivation Properties . 85

4.3.3 Access Control . 86

4.4 Formal Model . 87

4.5 Examples . 89

4.5.1 People Location . 89

4.5.2 Health Information . 91

4.6 Security Analysis . 92

4.7 Implementation . 94

4.8 Performance Analysis . 95

4.8.1 Measurements . 96

4.8.2 Discussion . 98

4.9 Related Work . 98

4.10 Summary . 100

5 Confidential Context-Sensitive Constraints 101

5.1 Overview . 101

5.2 System Model . 103

5.2.1 Nature of Constraints . 103

5.2.2 Scenario . 103

5.2.3 Enforceability . 104

5.2.4 Staleness of Constraint Information 105

5.3 Formal Model . 106

5.4 Constraints and Information Leaks . 109

5.4.1 Centralized Access Control . 110

5.4.2 Service-Based Access Control 113

5.4.3 Client-Based Access Control . 115

x

5.4.4 Third Entity . 116

5.5 Access-Rights Graphs . 117

5.5.1 Design . 117

5.5.2 Centralized Access Control . 120

5.5.3 Service-Based Access Control 121

5.5.4 Client-Based Access Control . 123

5.6 Hidden Constraints . 124

5.6.1 Design . 124

5.6.2 Formal Model . 126

5.6.3 Discussion . 126

5.7 Constraints and Information Relationships 127

5.8 Architecture . 127

5.8.1 Overview . 127

5.8.2 Hidden Constraints . 128

5.8.3 Digital Certificates . 132

5.9 Performance Analysis . 134

5.10 Related Work . 137

5.11 Summary . 139

6 Obscured Proof-of-Access Descriptions 141

6.1 Overview . 141

6.2 Requirements . 142

6.3 Obscured Proof-of-Access Descriptions 144

6.3.1 Hierarchical Identity-Based Encryption 144

6.3.2 Basic Operations . 145

6.3.3 Architecture . 146

6.3.4 Limiting the Search Space . 151

6.4 Discussion . 152

6.4.1 Identity-Based Encryption . 152

xi

6.4.2 Forwarded Access Rights . 154

6.4.3 Information Relationships . 155

6.4.4 Confidential Constraints . 156

6.5 Prototype Implementation . 158

6.6 Related Work . 159

6.7 Summary . 162

7 Encryption-Based Access Control 163

7.1 Overview . 163

7.2 Requirements . 164

7.3 Encryption-Based Access Control . 165

7.4 Complex Information . 166

7.5 Prototype Implementation . 167

7.6 Evaluation . 168

7.7 Related Work . 170

7.8 Summary . 172

8 Conclusions and Future Work 173

8.1 Contributions . 173

8.2 Reflections . 175

8.2.1 Office Scenario . 175

8.2.2 Home Scenario . 177

8.3 Directions for Future Work . 179

8.3.1 Remote Discovery of Certificates 179

8.3.2 Semantics for Access-Control Logic 179

8.3.3 Semantic-Web Concepts . 180

8.3.4 Uncertainty in Access Control 180

8.4 Summary . 180

A Hierarchical Identity-Based Encryption 183

xii

A.1 Operations . 183

A.2 Optimizations . 185

A.3 Evaluation . 185

Bibliography 187

xiii

xiv

List of Figures

1.1 Multitude of information services. 2

2.1 Information gateways. 23

2.2 People-location system. 26

2.3 SPKI/SDSI certificate. 27

2.4 Extended SPKI/SDSI certificate. 38

3.1 Structured proof. 62

3.2 Proof building. 63

3.3 Bundling-based information relationship. 65

3.4 Number of issued statements. 67

3.5 Proof-building time. 68

3.6 Client-response time. 70

4.1 Gateway. 82

4.2 Derivation property and derivation-constrained access right. 94

5.1 Information leak to issuer of access right. 112

5.2 Access-rights graph. 118

5.3 Building of access-rights graphs. 119

5.4 Access-rights graphs with conflict. 120

5.5 Access-control algorithm. 122

5.6 Proof-building architecture. 128

xv

5.7 One-way chain. 130

5.8 Extended SPKI/SDSI certificates. 133

5.9 Hidden, one-way chain-based constraints. 136

6.1 Architecture for client-based access control. 146

6.2 Hierarchies. 147

6.3 Bundling-based information hierarchy. 155

6.4 Location hierarchy. 156

7.1 Architecture for encryption-based access control. 165

7.2 Performance of encryption/decryption. 169

xvi

List of Tables

3.1 Example statements. 55

3.2 Client-response time. 69

3.3 Proof of Axiom 3.11. 73

3.4 Proof of Axiom 3.12. 75

4.1 Statements in the people-location scenario. 90

4.2 Client-response time. 96

5.1 Information leaks. 127

5.2 Client-response time. 136

6.1 Key-management demand. 152

A.1 Processing times. 186

xvii

xviii

Chapter 1

Introduction

Pervasive computing envisions a world in which hundreds of wireless computing devices
are available to a person. These devices will be embedded in the environment so that
people will use them without thinking about them [127]. This infrastructure enables the
continuous gathering and sharing of information about people. For example, there will be
sensors for monitoring people’s location, activity, health status, or even feelings.

Some of these sensors have already started showing up in our daily lives. For instance,
a lot of places are monitored by webcams connected to the Internet or by surveillance
cameras. Teen Arrive Alive [6] allows parents to track their children, based on GPS-
equipped cellphones from Nextel [99]. BodyMedia [23] offers an armband that monitors
medical information, such as skin temperature and movement, and that communicates this
information to a base station using wireless technology.

The enormous amounts of personal information gathered in pervasive computing make
privacy a major concern [80, 82]. Most personal information is confidential, that is, not
just anyone should be able to access it. Therefore, a pervasive computing environment
must control access to confidential personal information.

1.1 Privacy in Pervasive Computing

To get a better understanding of the challenges for access control to confidential personal
information in pervasive computing, let us look at an example scenario. The scenario
illustrates how personal information is gathered, provided, and used in pervasive comput-
ing. Figure 1.1 presents the providers of information that participate in the scenario. We

1

Calendar

People
Locator

Camera

Activity
Service

Access
Point

Laptop

GPS Cell
Phone

People
Locator

Body
Sensor

Activity
Service

Access
Point

People
Locator

Access
Point

People
Locator

ACME

Starbucks Carol

Nextel

Figure 1.1: Multitude of information services. The ovals represent providers of informa-
tion (“services”). The arrows indicate information flows. The services are maintained by
different organizations.

2

use the termservicefor such a provider. In the scenario, Carol, who works for company
ACME, uses a centralized calendar application, maintained by her employer. For exam-
ple, she schedules a meeting with Bob that will take place in her office. Carol lets her
executive assistant, Alice, access her current calendar entry. However, Carol limits this
access such that Alice will be granted access only if Carol is in Pittsburgh and if Carol is
not vacationing. Therefore, whenever Alice wants to access Carol’s current calendar en-
try, the mechanism controlling access to this information needs to retrieve Carol’s current
location and activity information from services offering this information and validate the
restrictions imposed by Carol.

Multiple services, exploiting different technologies, provide Carol’s location informa-
tion. For example, ACME deploys cameras in the company’s meeting rooms and provides
a wireless network. Therefore, ACME can locate Carol by detecting her face in a camera’s
videostream or by finding the access point to which Carol’s Wi-Fi laptop is connecting.
Furthermore, Carol’s cellphone company, Nextel, makes her location information avail-
able. Finally, while Alice is at home or at Starbucks, her and Starbucks’ wireless network,
respectively, also offer her location information. Carol’s activity information is also pro-
vided by multiple services. For example, one of the services derives this information from
information gathered by body sensors worn by Carol.

Our scenario reveals four interesting properties of information in pervasive computing:

• Information will be offered by multiple services, potentially run by different orga-
nizations, even in a single social environment. For example, while Carol is at work,
both Carol’s cellphone company and her employer provide her location informa-
tion. Also, different social environments might exploit different services. While
Carol is at work, her employer’s location service will provide her location infor-
mation. While she is at home, her own location service will offer this information.
In both environments, the location service of her cellphone company could provide
additional location information.

• Certain types of information will becomplex. By complex information, we mean
information that reveals other types of information. For example, Carol’s current
calendar entry about her meeting with Bob in her office reveals information about
Carol’s current location and activity. In addition, the entry also gives away Bob’s
current location and activity.

• Information will be processed and will change its nature while flowing from its
source through multiple services to a client asking for information. For example,
one of the location services retrieves a videostream from a camera, which is also a

3

service, detects Carol’s face in the stream, and determines Carol’s current location.
Another location service derives Carol’s location from her calendar entry, provided
by the calendar application.

• Information will be retrieved from a service not only for handing it over to a client
asking for this information (or for information derived from this information), but
also for constraining access to information that the client asked for. For example,
Carol’s location information is used for constraining Alice’s access to Carol’s cal-
endar information.

Access control to information has been well investigated in the context of informa-
tion stored in distributed and remote filesystems (such as AFS [67] with Kerberos [118],
SFS [90], or Microsoft Windows 2000 Server [92]) or in relational databases (such as
System R [55], Oracle Database [101], or databases exploiting role-based access con-
trol [100]). However, the properties of information that we just discussed make access
control in pervasive computing challenging, and applying existing access-control tech-
niques could easily result in information leaks [60]. Let us take a closer look at the chal-
lenges and how they have been traditionally addressed for filesystems or databases. We
will summarize each challenge in a lesson for access control to information in pervasive
computing.

1.1.1 Diversity in Service Administration

Services that provide information within a social environment can be administrated by
different organizations. For example, while Carol is at work, her cellphone company of-
fers her location information, and the calendar application run by her employer provides
her calendar information. An organization might not be authorized to access information
provided by another organization. Therefore, access control is required when services ex-
change information with each other. For example, assume that the calendar application
contacts the location service run by Carol’s cellphone company in order to ensure that
Carol is currently in Pittsburgh, as required by Carol when she granted Alice access to
her current calendar entry. Here, the cellphone company must validate that the calendar
application (i.e., the organization running this service) has access to Carol’s location in-
formation. In contrast, within a specific social environment, a distributed filesystem or
a database is typically deployed by a single organization on a set of machines that are
trusted by the organization and that communicate over secure channels. In this setting,
access control is required only at the interface between the trusted machines and entities
accessing information provided by the filesystem or database. (Such an entity is typically

4

a machine or an application that accesses information on a user’s behalf.) There is no need
to run access control (other than authentication) when file servers exchange information
or while information is processed in a distributed database.

Not only can there be services run by different organizations in a single social envi-
ronment, there can also be multiple social environments. If people transitioned between
multiple environments, this transitioning should be seamless. For instance, it should not
be necessary for an individual to decide whom to grant access to her location informa-
tion for each environment. Instead, the person should be able to make a single decision
that applies to any environment in which she participates. In the case of filesystems or
databases, these decisions are typically coupled to the organization that provides informa-
tion in an environment, and sharing the same decision across environments is not possible.
For example, in a remote filesystem, such as AFS [67], an individual needs to make sepa-
rate decisions for each set of directories or files bound to a particular organization that is
part of the filesystem. An individual can have a home directory both at Princeton and at
Carnegie Mellon, but she cannot make a single decision that applies to her private files or
directories both at Princeton and at Carnegie Mellon.

The lesson from this challenge is that, in pervasive computing, access control needs to
be able to deal with services run by different entities, while making it easy for individuals
to manage access to their personal information provided by these services.

1.1.2 Complex Information

Complex information enables people learning this information to derive multiple types of
information about one or multiple individuals. For example, a calendar entry can reveal
location and activity information. Similarly, a videostream delivered by a camera can
reveal the location and activity of the people shown in the videostream. If a client that
accesses this complex information is not authorized to access the derivable information,
there will be an information leak and a person’s privacy will be invaded.

Such information leaks are also possible in filesystems or databases. Avoiding these
leaks in a filesystem is hard since (current) filesystems are not aware of the contents of a
file; access control takes only the name of a file into account. A coarse-grained way for an
individual to protect a file that contains complex information (e.g., a schedule) is to keep
the file private and to not put anyone else on the access control list (“ACL”) of the file.
Obviously, this solution does not work for pervasive computing, where information needs
to be accessible in order to serve people. Alternatively, the individual could carefully
establish the ACL such that a client is put on the ACL only if the client has access to all

5

the information revealed by the complex information in the file. However, this process is
tedious and error prone and could lead to consistency problems. For example, consistency
problems arise if the revocation of a client’s access to information revealed by the complex
information stored in the file does not result in the removal of the client from the ACL of
the file.

Similarly, a database can provide complex information in the rows of a table (or of
a view derived from tables). Database access control is based on the name of a table
(or view) and can be row based [101].1 To prevent a row from leaking information, the
entity that grants access to the row must be aware of the clients that have access to all the
information stored in the row and grant only these clients access to the row. However, this
approach suffers from the same problems as the ones mentioned in the filesystem scenario.

The lesson from this challenge is that, in pervasive computing, access control itself
needs to be aware of the contents of complex information and treat this content as a first-
class citizen when making an access decision.

1.1.3 Derivation of Information

In pervasive computing, there will be services that derive information. In particular, these
services will takeinput informationand deriveoutput information. Input information can
be raw, such as a videostream, audiostream, or a person’s heart rate, and potentially reveal
information in addition to the output information derived by a service. For example, while
a service can derive location information from a videostream, it might also be possible to
derive activity or health information from the stream. If a service that derives information
has access to raw information, it will become an attractive target for attackers. Namely, an
intruder into the service will be able to access the raw information.

In a filesystem, there is no processing of information. In a database, information can
be processed (e.g., a view can contain processed information). However, as mentioned
in Section 1.1.1, the information gathering and processing typically take place within the
trusted computing base established by the organization responsible for the database. As a
result, an intruder into the trusted computing base will automatically have access to input
information. In pervasive computing, services do not necessarily trust each other and are
not part of a single trusted computing base, which gives us the opportunity to implement
more sophisticated access control and to limit intruders’ access to input information.

1We ignore column-based access control, where the values in some columns are masked, since this
selective disclosure of complex information can lead to information leaks based on statistical inference, see
Section 3.4.

6

The lesson from this challenge is that, in pervasive computing, a service’s access to
input information should be limited such that the service can still perform its derivation
functionality, but without giving an intruder into the service complete access to the input
information.

1.1.4 Confidential Context-Sensitive Constraints

The availability of an individual’s context-sensitive information (such as her current loca-
tion or the current time) makes it possible to exploit this information for context-sensitive
access control. For example, in our example scenario, Carol grants access to Alice only
if Carol is in Pittsburgh and if Carol is not vacationing. However, exploiting confidential
context-sensitive information in a constraint can result in information leaks. In particular,
by observing the fate of a request for information that is accessible only under a set of
context-sensitive constraints, an observer that knows about the nature of these constraints
will learn whether they are satisfied. If any of these constraints involved confidential infor-
mation to which the observer does not have access, there could be an information leak. For
example, if Alice is granted access to Carol’s calendar entry, she will learn that Carol is in
Pittsburgh, regardless whether Alice is authorized to access Carol’s location information.

Current filesystems or databases are limited in the types of definable constraints or do
not exploit confidential context-sensitive constraints. For example, filesystems or databases
typically limit constraints to membership in a group or role, respectively. For some
databases [101], it is possible to constrain access based on context-sensitive information,
such as the current time. However, this information is not confidential and knowing it does
not result in an information leak. While it is possible to incorporate more flexible context-
sensitive constraints into database access control, this option has received limited interest
because of the missing availability of context-sensitive information (such as location in-
formation). However, pervasive computing is going to make such information much more
widely available.

The lesson from this challenge is that, in pervasive computing, access control needs
to support context-sensitive constraints, but without leaking the potentially confidential
information listed in such a constraint.

7

1.2 Related Work

In this thesis, we present an access-control architecture that solves the challenges discussed
in the previous section. Before we outline our approach, let us review the solutions chosen
by other research projects in pervasive computing. We will re-visit each of the challenges,
and will see that none of them has been addressed sufficiently in previous work.

1.2.1 Diversity in Service Administration

Many pervasive computing projects [5, 38, 42, 96, 132, 121, 75] rely on the existence of
a centralized entity (e.g., “inference engine” [5], “specialized server entity”[38], “security
agent” [75], or “middleware service”[96]) that knows all the services in an environment
and that hides the fact that multiple services can provide the same type of information
from individuals. The centralized entity is defined as being trusted by all the services
to run access control on their behalf and as being able to retrieve information from any
service.

The advantage of this approach is that it prevents individuals from having to be aware
of each service. In particular, individuals do not have to decide for each service whom to
grant access to the information provided by the service.

However, this approach has several drawbacks. The existing projects typically assume
that all services within an environment are run by the organization associated with the en-
vironment. However, this assumption does not necessarily hold in practice. For example,
in our example scenario, Carol might want to use the location service provided by her
cellphone company regardless of the environment that she is participating in. In addition,
many research projects have been deployed only in the context of a single environment; it
is not clear how they would be deployed in multiple environments. Furthermore, while the
approach prevents an individual from making service-dependent decisions about whom to
grant access, the individual still has to decide for each type of information whom to grant
access. This approach will not scale if there are lots of different types of information.

There are a few projects that are not centralized [93, 66, 51]. However, these projects
assume that an individual controls all the services that provide information about her [51,
66], which is not the case in practice, or they do not address the scalability problem [93],
where multiple services offer the same information.

8

1.2.2 Complex Information

Many existing pervasive computing projects initially neglected access control to informa-
tion and focused on “Smart Rooms” [75] and on controlling access to physical resources
available in such a room, such as a projector or a printer [5, 42, 75]. However, the upcom-
ing of the Semantic Web [17] has also triggered interest in access control to information.
The goal of the Semantic Web is to develop languages that are adequate for representing
and reasoning about the semantics of information on the Web. Several projects [38, 51]
have exploited techniques from the Semantic Web for representing and reasoning about in-
dividuals’ privacy preferences and about resources in a pervasive computing environment.
However, while it has been recognized that complex information can cause information
leaks [38], the problem has not been addressed in a deployed architecture.

1.2.3 Derivation of Information

As discussed in Section 1.2.1, many existing pervasive computing projects rely on a cen-
tralized approach for running access control. Therefore, in terms of dealing with derived
information, they suffer from the same problem as traditional solutions for access control
in a filesystem or database, as explained in Section 1.1.3. In particular, the information
gathering and derivation take place within a trusted computing base, and an intruder au-
tomatically gets access to the input information. Projects that are not centralized and that
address information derivation [93] do not suffer from this drawback. However, it is still
possible for an intruder into a service to submit authorized queries for input information
that the service can access to other services.

1.2.4 Confidential Context-Sensitive Constraints

In existing pervasive computing projects [5, 38, 51, 93], it is typically possible to constrain
an individual’s access to a resource based on the individual’s context, such as her location
or the current time. However, most projects ignore information leaks caused by such
context-sensitive constraints. While there has been some research in this area [93], the
existing research considers only a small subset of the information leaks that constraints
could cause in pervasive computing. We will explore this limitation in more detail in
Section 5.10.

9

1.3 Thesis Goal

The challenges and the related work discussed in Sections 1.1 and 1.2, respectively, raise
the following central question:

Is it possible to control access to confidential information in pervasive com-
puting environments, where

• services providing this information are maintained by different adminis-
trative entities,

• the offered information can be of a complex nature and reveal other types
of information, and

• access decisions can be constrained based on confidential context-sensitive
information about an individual,

without

• requiring individuals to manage their personal information in a service
or environment-specific way,

• relying on a trusted centralized authority,

• leaking confidential information revealed by complex information, and

• leaking confidential information used in context-sensitive constraints?

In this thesis, we answer this question in an affirmative way. We build on the following
key techniques:

Client-based access control.Since services in pervasive computing environments will be
administrated by different organizations, we cannot expect these services to trust a
single centralized entity to run access control on their behalf. Instead, we adopt a
distributed approach, where services themselves control access to their provided in-
formation, assisted by clients. In particular, a client needs to prove to a service that
the client is authorized to access the requested information, based on the possession
of one or multiple digital certificates. Suchclient-basedaccess-control architectures
are not a new concept. However, existing implementations [16, 69] of the concept
are not targeted at pervasive computing and do not deal with the challenges men-
tioned in Section 1.1. In addition, for complex information, they can leak informa-
tion when a service informs a client of the required proof of access. Our architecture
is based on a formal model for access control in a distributed system.

10

Flexible information representation. Since there will be many services offering infor-
mation and many different types of information, we need to minimize the number
of decisions that an individual needs to make when deciding about whom to grant
access to her personal information. We introduce a representation scheme for in-
formation that allows an individual to grant service-independent and environment-
independent access to her personal information and to re-use the same decision for
multiple types of information.

Semantics of information. Since complex information can reveal multiple types of infor-
mation, access control must be aware of the semantics of information. We formalize
the semantics of information and incorporate these semantics as a first-class citi-
zen into a formal model of access control. In particular, our formal model supports
access control to complex information and to derived information. Based on this
model, we make a client-based access-control architecture for pervasive computing
aware of the semantics of the information to which access is controlled.

1.4 Contributions

All the contributions of this thesis have been implemented in an actual pervasive comput-
ing environment and evaluated with measurements or analytically. In particular, this thesis
makes the following key contributions:

• We present a client-based access-control architecture for pervasive computing that
supports complex and derived information and context-sensitive access decisions.
Our distributed approach simplifies dealing with services run by different organiza-
tions.

• We introduce the concept ofinformation relationships, which capture the semantics
of complex information and allow us to incorporate the semantics as a first-class
citizen into our client-based access-control architecture. Information relationships
can prevent information leaks caused by complex information revealing other types
of information. Furthermore, information relationships can make access manage-
ment easier for individuals since they allow an individual to apply a single access-
management statement to multiple types of information.

• We present the concept ofderivation-constrained access control, which enables our
client-based access-control architecture to take derivation properties of information
into account for access control. Namely, the concept requires a service that derives

11

information to prove that the service asks for input information on behalf of a client
authorized to access the derived information. In this way, we can limit the influence
of intruders into a service that derives information.

• We present the concept ofaccess-rights graphs, which supports the identification of
potential information leaks in context-sensitive access control and simplifies reso-
lution of constraints. Furthermore, we introduce the concept ofhidden constraints,
which can prevent context-sensitive constraints from leaking confidential informa-
tion. Finally, we show how to incorporate the concepts into our client-based access-
control architecture.

• We present the concept ofobscured proof-of-access descriptions. These descriptions
address information leaks that are possible when a service that provides complex
information informs a client of the required proof of access. We also show how to
incorporate the concept into our client-based access-control architecture.

• As an alternative option to distributed access control based on proofs of access, we
present an encryption-based access-control architecture for pervasive computing. In
this architecture, a service grants any client access to its information, but the service
encrypts the information before giving the information to a client.

Our access-control architecture does not address the following challenges:

• Our architecture controls read access to information. It does not control write access
to information. Similarly, it does not provide access control to resources other than
information (e.g., a projector or a printer).

• Our architectures does not provide service localization, that is, locating the service
that provides information about an individual in a set of services. We do address a
subset of this problem in the context of context-sensitive constraints.

• Proofs of access in client-based access control contain digital certificates showing
that an individual grants another individual access to information. Our architecture
does not address remote discovery of certificates. We assume that a client that needs
to assemble a proof of access has the necessary certificates locally available.

1.5 Guide To The Thesis

Chapter 2, apart from Section 2.4, is fundamental to the rest of the thesis and should be
read first. The reader does not have to follow the other chapters in order, they are mostly

12

independent of each other. The only exception is Chapter 7, which depends on Chapter 6.
In more detail, the rest of this thesis is organized as follows:

In Chapter 2, we introduce the concepts of access policies and access rights and discuss
the application of these concepts in the context of a people-location system and of a more
general, client-based access-control architecture for pervasive computing. As a part of the
latter architecture, we present an information-representation scheme and a formal model
for access control. We will use the access-control architecture as a base for incorporating
the contributions made in the other chapters.

In Chapter 3, we introduce information relationships and add support for them to the
formal model and to the client-based access-control architecture. We also provide an ana-
lytical and measurement-based evaluation.

In Chapter 4, we introduce derivation-constrained access control and add support for
it to the formal model and to the client-based access-control architecture. We also provide
a measurement-based evaluation.

In Chapter 5, we investigate how confidential context-sensitive constraints can lead to
information leaks in different access-control approaches. We incorporate constraints into
the formal model and into the client-based access-control architecture. We also provide a
measurement-based evaluation.

In Chapter 6, we introduce obscured proof-of-access descriptions and incorporate sup-
port for them into the client-based access-control architecture.

In Chapter 7, we present an encryption-based access-control architecture for pervasive
computing and provide a measurement-based evaluation.

In Chapter 8, we conclude our work with a review of our contributions along with a
discussion of some future research directions.

13

14

Chapter 2

Design of Access-Control Architecture

In this chapter, we introduce a distributed architecture for running access control in perva-
sive computing. Before we give the design of this architecture, let us put our research into
context and compare it with related research directions.

2.1 Overview

Traditionally, access control has been studied in the context ofinformation security. Infor-
mation security rests on the confidentiality, integrity, and availability of information [20].
Confidentiality keeps information secret, integrity refers to its trustworthiness, and avail-
ability involves the ability to use information. In this thesis, we are concerned with the
confidentiality of information.

Information security is not the same asinformation privacy[34], which is also a big
concern in pervasive computing [80, 82]. In particular, privacy relates to personal control
over one’s personal information, whereas security relates to organizational control over
information. For example, privacy involves people being in control of their information,
people being given feedback about usage of their information, or long-term retention of
their information [66]. Several research projects have started looking at these issues [66,
83, 8, 76]. Information security is required for achieving information privacy. If a service
deployed by an organization did not employ security, the privacy of people that are part of
or interact with this organization could be invaded.

In terms of information security, this thesis addresses confidentiality of information.
There are three main research directions in this area [32], though the boundaries can be

15

fluent, especially in pervasive computing, as illustrated below. First, there isaccess con-
trol, which is what we are studying. Access control ensures that all accesses to information
occur exclusively to the modes and rules fixed by protection policies. These policies state
whether and how individuals in a system can access information offered by the system.
For example, in the scenario introduced in Section 1.1, Alice can access Carol’s calendar
entry only if Carol grants this permission to Alice in a protection policy. Second,flow
control regulates the flow of information in a system. In particular, information must not
flow to an entity that is not authorized to access it. Carol’s calendar entry, leaking her
and Bob’s location and activity information, can be looked at as a flow-control problem.
Third, inference controltries to protect information from indirect detection. Namely, an
entity should not be able to derive information that the entity cannot access directly by
deriving the information (or at least some properties of the information) from information
that the entity can access. Alice inferring Carol’s current location based on the fate of her
query for Carol’s calendar entry can be looked at as an inference-control problem.

In this thesis, we use access-control techniques to avoid the flow-control and inference-
control problems mentioned above. In particular, we will address information leaks caused
by complex information in Chapter 3 and by confidential context-sensitive constraints in
Chapter 5. We will elaborate on other techniques in the corresponding related-work sec-
tions. In this chapter, we present an access-control architecture for pervasive computing
that is flexible enough to support the various access-control mechanisms presented in the
reminder of this thesis.

Two main components of access control, and thus of an access-control architecture,
are protection policies and enforcement of these policies. In this chapter, we first discuss
protection policies for pervasive computing (Section 2.2). We then elaborate on different
ways for the enforcement of such policies (Section 2.3). We discuss the application of
these two concepts in the context of a people-location system (Section 2.4). The lessons
learned during the design and deployment of this system contributed toward the design of
protection policies and their enforcement in our access-control architecture for pervasive
computing (Sections 2.5 and 2.6). We also state our security model (Section 2.7) and
discuss related work (Section 2.8).

2.2 Access Policies

Access control requires protection policies (“access policies”). There are both mandatory
policies and discretionary policies. In a mandatory policy, the organization running a ser-
vice controls access to information and individuals cannot alter that access. For example,

16

in the Bell-LaPadula Model, information is classified (e.g., unclassified, confidential, se-
cret, or top secret) and individuals are given corresponding clearances. The model prevents
an individual from reading information that has a classification higher than the individual’s
clearance. In a discretionary policy, individuals can tell an access-control mechanism
whether to allow or to deny access to information. Discretionary policies are based on the
identification of the individual requesting access and the identity of the information.

In pervasive computing, individuals should be able to decide whom to grant access
to their personal information. Therefore, pervasive computing calls for the decentralized
administration of access policies, that is, discretionary policies.

2.2.1 Properties of Access Policies

In this section, we study the properties of access policies that we do or do not want to hold
in the context of pervasive computing.

Distributed Access Policies

If Carol states that Alice can access her calendar and if Alice states Dave can also access
Carol’s calendar, then Dave should be able to access this calendar. Here, Carol’s access
policy is established by both Carol and Alice. Arguably, Carol might not want Alice to be
able to grant access to Dave. However, even if she prevented Alice from doing so, Alice
could still act as a proxy on Dave’s behalf. (The question whether being granted access
to information should imply being able to grant other people access has been discussed in
the access-control research community for a long time.)

Therefore, multiple (authorized) entities should be able to establish an individual’s ac-
cess policy for personal information in pervasive computing. We call such access policies
distributed.

Different Policy Issuers

We expect that in many scenarios, individuals (plus anyone to whom they grant access)
will be responsible for defining access policies for their personal information. However,
there are cases where a separate entity will specify access policies. For example, a parent
might define access policies on behalf of a child. For a service run by an individual’s em-
ployer, the employer might define the access policies for information about the individual
provided by the service.

17

Therefore, access policies in pervasive computing must support the case where the
entity establishing a policy for an individual’s personal information is different from the
individual.

Positive vs. Negative Access Policies

Typically, an access policy states that an individual can access a piece of information.
However, it is also possible for an access policy to say that an individual cannot access a
piece of information. For example, AFS [67] supports this feature. In this way, it becomes
possible to grant access to all members of a group except some explicitly listed members.
Consider the situation where Carol would like to grant all students in her class access to
her calendar, except Alice. Therefore, she states in her access policy that class members
can access her calendar. She also states that Alice cannot access her calendar. In order for
Carol’s policy to have the desired effect, access control must give her second statement
precedence over the first one.

Denying access in an access policy raises several issues in terms of usefulness and
enforcement of such policies. First, it is unclear how useful this feature is in practice.
Second, being able to deny access makes the specification of access policies more difficult
since it requires the issuer of a policy to understand the concept of precedence. Remember
that in pervasive computing, access policies will often be defined by individuals, which
might have only limited understanding of the mechanics of access control. Therefore,
in this thesis, we strive to make access policies as simple as possible, while maintaining
their usefulness. Third, policies that deny access are difficult to enforce in an environment
lacking a centralized repository for access policies that is consulted by the entity making
an access decision upon a request. Here, if access is denied in a policy, it will become
difficult to ensure that all interested entities become aware of this denial. For example,
in client-based access control, where a client needs to prove to a service that it is autho-
rized to access the requested information, a client that is denied access in a policy has
no interest in showing this statement to a service. Therefore, distributed access-control
frameworks [21, 22, 47, 16, 69] typically do not support access denial in their policies.
Formally, these frameworks require that an access policy regulating access to information
is monotonic [22], that is, if an access policy consists of a set of statements and an indi-
vidual is granted access based on a subset of these statements, then the individual is also
granted access based on another subset of these statements, where the second subset is a
superset of the first subset.

Due to these reasons, we do not support access policies that deny access in this thesis.

18

2.2.2 Access Rights

To satisfy the property of access policies being distributed, as outlined in Section 2.2.1,
we build access policies out ofaccess rights.

An access right is a self-contained statement, in which an entity states that another
entity has access to a piece of information (assuming that the former entity has access in
the first place). In this thesis, we will use digital certificates for expressing access rights,
that is, an access right is a statement signed by its issuer. In this way, we can store access
rights in a distributed way, detect tampering attacks on them, and identify the issuer of an
access right. In addition, digital certificates are attractive since any individual (i.e., any
owner of a public/private key) can issue digital certificates and hence access rights.

For an entity to be granted access to confidential information, there must be one or
multiple access rights authorizing this access. Based on our discussion, an access right is
specified as follows:

[Issuergrantssubjectaccess toinformation under someconstraints.]

Let us elaborate on the various elements of an access right:

Issuers issue access rights.

Subjects are granted access rights. A subject can become an issuer by defining an access
right and granting the access right to another subject. Therefore, there can be an
entire chain of access rights that forward an access right. We call the first access
right in the chain theinitial access right.

The initial access rights to a piece of information plus any access rights forwarding
an initial access right form a directed graph. This graph corresponds to the access
policy of this information since it lists all subjects that can access the information
and under what conditions. These access rights can be defined by multiple entities,
and we achieve distributed access policies.

Information describes an information item (e.g., email or location) about a specific entity
(e.g., Alice). For each type of information, there must be anownerwho is allowed to
define its initial access rights. For example, Alice defines the initial access rights for
her location information. Depending on the scenario, the owner can be the individual
the information is about, another individual (e.g., a parent), or the organization run-
ning the service providing the information. Associating information with its owner
will allow us to easily support different policy issuers, as required in Section 2.2.1.

19

Constraints define under what conditions the access right is valid. There can be differ-
ent types of constraints. For example, an access right is valid only during particular
times of the day or for a certain location of the client that requests access to informa-
tion. Similarly, a constraint can limit the lifetime of an access right. In derivation-
constrained access control, a constraint requires that the information in the access
right is used for answering a request for derived information, as discussed in Chap-
ter 4.

In order for a client requesting information to be able to exploit an access right to this
information, the access right must be valid, that is, any constraints attached to the access
right must be satisfied and the subject of the access right must correspond to the client. In
addition, the issuer of the access right must either own the information in the access right
or be the subject of another valid access right to the same information that is exploitable
by this issuer.

Either the subject or the constraints can be omitted from an access right. Leaving the
subject out of an access right specification is a shortcut for granting the access right to all
possible subjects. If the constraints are omitted from an access right, they will not be taken
into account for ensuring its validity.

It is possible to add additional elements to an access policy. For example, in the context
of enterprises dealing with customer privacy,privacy policieshave been introduced [8, 76].
A privacy policy includes an access policy as discussed in this section. In addition, it also
contains apurposepart (what the information can be used for (e.g., marketing)), anaction
part (what actions can be taken on the information (e.g., read or write)), and anobligations
part (what duties must be fulfilled when using the information (e.g., notify owner of infor-
mation)). In this thesis, we concentrate on access policies; they are a required component
for implementing privacy policies.

As mentioned in Section 2.2, discretionary access control requires authentication of a
client. This authentication can be arbitrarily complex. For example, if an access right is
granted to Alice and somebody requests access by presenting Alice’s alleged public key,
the mapping from Alice to this public key must be validated. This mapping process has
been well investigated. For example, it can be solved with a PKI together with X.509
certificates. Therefore, we avoid the mapping in this thesis and assume that both the
subject and the issuer of an access right correspond to a public key. In addition, our
discussion will treat public keys and their owners equivalently. For instance, we do not
differentiate between Alice and Alice’s public key. In this simplified model, authenticating
a client corresponds to ensuring that the client owns the private key corresponding to its
alleged public key. Again, this authentication has been well researched (e.g., SSL with

20

client authentication).

2.3 Access-Control Architectures

After having examined access policies for pervasive computing, we now discuss four
architectures for the enforcement of these policies. In particular, we study centralized,
service-based, client-based, and end-to-end access control.

2.3.1 Centralized Access Control

In centralized access control, a client sends a request for information to a centralized entity,
which runs access control on behalf of individual services. If there are access rights that
grant access to the client, the centralized entity will retrieve the requested information
from a service and return the information to the client. The services in an environment
trust the centralized entity to properly run access control on their behalf and are willing to
give any information to the centralized entity. Many pervasive computing frameworks that
support access control pursue a centralized approach [5, 38, 42, 96, 132, 121, 75].

The advantage of centralized access control is its flexibility. First, since the centralized
entity has access to any information, all this information can be included when making an
access decision. Second, it is reasonable to assume that the entity has sufficient computing
resources and that it can use a powerful rule engine to reason about an access decision.

Centralized access control has the drawback of a single point of failure. Since every
service trusts the centralized entity, an intruder into this entity will get access both to the
knowledge stored in the entity and to the information provided by all the services in the
environment. In addition, since every request has to go through this entity, the entity can
become a performance bottleneck. Furthermore, it is unclear how the approach scales to
multiple pervasive computing environments. Will there be a single entity shared by all the
environments? Will there be a centralized entity per environment? The former approach
does not look realistic. The latter approach raises consistency issues: How can we ensure
that each environment uses the same knowledge when making an access decision? Finally,
while a centralized approach allows for flexible access control, the flexibility can make
it undecidable for the centralized entity to decide whether a request should be granted
access [81, 7].

21

2.3.2 Service-based Access Control

In service-based access control, a client contacts a service directly. Each service controls
access to the information that it provides. If there are access rights granting access to a
client, a service will return the requested information to the client.

Service-based access control avoids a single point of failure. An intruder breaking
into a service has access only to information provided by this service (and information to
which the service has access), but not to all information provided by, for example, all the
services in an environment.

The drawback of this approach is its potentially limited flexibility. A service might
not have access to all the information provided by the services in an environment and thus
cannot exploit this information for making an access decision. In addition, making such
a decision can be expensive for a service, especially if this task involves contacting other
services in order to locate access rights or to resolve constraints on access rights. Finally,
this approach also suffers from the drawback that access control can become undecidable.

We can reduce the load on a service due to access control by assigning some of the
load to a client or to other services. We investigate these two approaches in the next two
sections.

2.3.3 Client-Based Access Control

In client-based access control, a client contacts a service directly. The client needs to
prove to the service that it is authorized to access the requested information. A proof of
access consists of one or multiple access rights. The service makes the access decision by
ensuring the validity of the proof submitted by the client. This approach is less expensive
for a service since it shields the service from performing potentially expensive tasks, such
as locating required access rights or resolving constraints. Validating an access right tends
to be cheap. In existing client-based access-control frameworks [16, 69], access rights are
expressed as digital certificates in order to ensure their integrity.

An advantage of client-based access control is that the validity of a proof of access can
be checked even if the proof is based on an undecidable logic [7]. In addition, building a
proof of access can be easier for a client than for a service since it can be done in a stepwise
fashion [81]. Alternatively, a client can limit itself to a decidable subset of the logic [16].
Another advantage of this approach is that there is no single point of failure. Similar to
service-based access control, an intruder into a service gets access only to information
provided by this service (and information to which the service has access).

22

Request
Client Gateway

Request’
Gateway Gateway

Request’’ Request’’’

Upstream Downstream

Endpoint

Figure 2.1: Information Gateways. Services are either gateways or endpoints. A request
sent to a gateway by a client can result in further requests to other gateways, and so on, till
a request reaches an endpoint.

Due to these advantages, we focus on a client-based approach for the access-control
architecture presented in this thesis. It is possible for computationally weak clients to
offload proof building to a proxy. Furthermore, our architecture supports the usage of
powerful, potentially centralized rule engines for building proofs of access, which enables
more flexible access control. However, we envision that most requests for information
require only simple proofs of access, which can be dealt with in a fully distributed fashion
by our architecture.

2.3.4 End-to-End Access Control

As shown in the scenario in Section 1.1, services might have to communicate with other
services in order to answer a client’s request for information. For example, a location
service exploiting the location of a person’s laptop for locating the person might have
to contact access points. Similarly, a service providing availability information about a
person might have to contact a service providing location information about this person.
This service in turn might contact other services. In the rest of this thesis, we call services
that issue further requestsgatewaysand services that do notendpoints, as illustrated in
Figure 2.1. It is possible that a gateway contacts multiple services.

Service-based (and client-based) access control requires each service to make an access
decision. When we extend this model to a world with gateways, each gateway and endpoint
needs to make an access decision. A service’s decision is based either on the identity of
the client requesting information or on the identity of the gateway requesting information.
In the latter case, the decision takes neither the identity of the client nor the identity of any
gateways upstream of the requesting gateway into account. We call this modelstep-by-step
access control, since access control for each step is independent of the previous steps.

Alternatively, to reduce the load on gateways, it is possible to have only the endpoint(s)
reached by a series of requests make an access decision, but not any of the gateways. In this

23

model, an endpoint’s decision is based on both the identity of the client and the identity of
all the upstream gateways. We call this modelend-to-end access control. The model still
requires gateways to cooperate. Namely, a gateway needs to inform the next downstream
gateway or the endpoint of the identity of the client and of any upstream gateways, so that
the endpoint can consider these entities in its access decision. For example, Howell and
Kotz [69] exploit end-to-end access control.

End-to-end access control has the advantage that it reduces the load on some of the
services since gateways are no longer required to make an access decision. However, it
can increase the load on an endpoint. For example, in client-based access control, a proof
of access covering a gateway and a client can be more expensive to validate than a proof
of access covering only the client or only the gateway (see Chapter 4). Therefore, in terms
of overall access-control load, neither of the two approaches is a clear winner; the right
choice depends on the deployment environment. If an endpoint was a computationally
limited device, step-by-step access control looks attractive because of its reduced load on
endpoints. (However, recent advances are making this limitation disappear [57].) Sim-
ilarly, if a gateway was a simple device, such as a filter that reduces the granularity of
location information, and is not able to make an access decision, the end-to-end approach
might be better suited.

A significant advantage of end-to-end access control is that it allows us to limit the
power of access rights granted to a gateway. As explained in Section 1.1.3, services that
derive information and that have access to raw information become attractive targets for
attackers. With the help of end-to-end access control, we can limit the influence of an
attacker into a gateway by making gateways prove to endpoints that they are asking for
information on behalf an authorized client. We elaborate on this approach in Chapter 4.

For simplicity reasons, we concentrate on the interaction between a client and the first
gateway in most of this thesis. However, all the presented access-control mechanisms
can also be applied to interactions between services. Similarly, we assume step-by-step
access control and have the first gateway make access decisions. Again, it is possible to
incorporate our presented mechanisms into end-to-end access control. We will explicitly
address end-to-end access control and interactions between services in Chapter 4.

After having reviewed four access-control architectures, we now present two sample
implementations in the next sections.

24

2.4 People-Location System

Before building a client-based access-control architecture for pervasive computing, we
designed and deployed a distributed architecture for a subset of the information offered
in pervasive computing, namely, for location information [61]. In this section, we review
this system, present the access rights that we use for implementing access policies, explain
how the system distributes access-control load, and discuss several lessons that affected
the design of the more general access-control architecture.

2.4.1 Overview

We assume that the location system has a hierarchical structure. The system consists of
multiple location services. Each service either exploits a particular technology for gath-
ering location information or processes location information received from other loca-
tion services. Figure 2.2 shows an example of such a system, as it could be deployed in
Carnegie Mellon’s School of Computer Science (SCS). A client contacts the People Lo-
cator service at the root of the system. This service then contacts other services, which
themselves may also contact other services. Location information flows in the reverse
direction of a request (not shown in the figure).

There are two groups of location services. The first group consists of services that are
aware of the location of people. The second group includes services that are aware of the
location of devices. These services can locate a user indirectly by locating the device(s)
that the user is carrying with her. The People Locator service, the Calendar service, and the
Device Locator service belong to the first group. The People Locator service aggregates
location information received from other services. The Calendar service looks at people’s
appointments to determine their current location. The Device Locator service maps a
query for a person to potentially several queries for her devices and contacts services in
the second group. In our example, this group of services consists of the Wi-Fi service
and the GPS service. The Wi-Fi service keeps track of the location of wireless devices
by identifying the access point(s) they are connecting to. Different organizations may
administrate the various services.

2.4.2 Access Rights

A location service grants access to clients based on access rights. An access right can
restrict the granularity of the returned location information. In addition, it is possible to

25

GPS

Calendar Device Locator

controlled by non−CMU entities

controlled by SCS

controlled by CMU

Device

Service

People Locator

Wi−Fi

Access Point Cellphone

Figure 2.2: People-location system. The People Locator service forwards a query for the
location of a person to the Calendar service and to the Device Locator service. The Device
Locator service locates a person by locating her devices. It queries the Wi-Fi service for
the location of the person’s laptop and the GPS service for the location of the person’s
cellphone.

26

(cert
(issuer (pub key:people locator))
(subject (pub key:alice))
(propagate)
(tag (policy alice)))

(cert
(issuer (pub key:alice))
(subject (pub key:bob))
(propagate)
(tag (policy alice

(* set (* prefix world.cmu.wean) world.cmu.doherty.room1234)
(* set (monday (* range numeric ge #8000# le #1200#))

(tuesday (* range numeric ge #1300# le #1400#)))
coarse-grained)))

Figure 2.3: SPKI/SDSI certificate. We show an access right in which the People Locator
service lets Alice decide about her location policy and an access right in which Alice
grants access to Bob.pub key:foo stands for foo’s public key. (Digital signatures are
omitted.)

indicate a set of location and time intervals. A service will return location information only
if the queried individual is at one of the listed locations and during these time intervals,
respectively.

We use SPKI/SDSI digital certificates [47] for expressing access rights. Authentica-
tion and authorization based on SPKI/SDSI certificates do not rely on the existence of a
global naming structure as, for example, the one introduced for X.509 certificates. Instead,
the authentication and authorization step are merged, and a certificate gives access rights
directly to a public key. Tools exist that evaluate chains of SPKI/SDSI certificates (i.e.,
forwarded access rights) and decide whether requests should be granted access [69].

SPKI/SDSI certificates are encoded as S-expressions, which are Lisp-like expressions.
We give two example certificates in Figure 2.3. Keywords are printed in bold. In the first
certificate, the People Locator service grants Alice access to her location information. The
issuerentry corresponds to the issuer of the access right. As discussed in Section 2.5, we
assume that this issuer is a public key. Thesubject entry lists the subject of the access
right. Similar to the issuer, it is a public key. The keywordpropagatestates that forward-
ing is allowed. Alice can thus issue additional certificates that grant other people access
to her location information. The entries following the keywordtag specify the type of

27

the certificate (e.g.,policy for a location policy) and its scope (e.g.,alice for Alice’s
location policy).

In the second certificate, Alice grants Bob access to her location information. Bob can
locate Alice only if she is either in Wean Hall or in Room 1234 in Doherty Hall and on
Monday between 8am and 12pm and on Tuesday between 1pm and 2pm. Finally, Bob has
only coarse-grained access to Alice’s location information.

2.4.3 Distributed Access Control

In the people-location system, when a client sends a request to a service, the client also
submits access rights that show that the client is authorized to access the requested infor-
mation. For example, when contacting the People Locator service, Bob needs to submit
the two certificates shown in Figure 2.3 in order to be granted access to Alice’s location
information. We also employ the concepts ofservice trustanddelegationto reduce the
influence of an attacker into a service and to avoid redundant access-control checks, re-
spectively. Let us discuss these two concepts in more detail.

Service Trust

Some of the services in the location system, such as the People Locator service shown
in Figure 2.2, do not generate their own location information. Instead, they forward re-
ceived requests to other services and process the answers from these services. To avoid
information leaks, the location system must ensure that only services that implement ac-
cess control are given location information by other services. One way to implement this
condition is to require that a service has an access right to the location information of the
queried individual. Having an access right means that a service can actively issue requests
for information. This option is appropriate for services that must be able to issue requests
for location information. For example, the Device Locator service shown in Figure 2.2 has
to generate location queries for devices upon receiving a location query for an individual.
However, for services such as the People Locator service, this option gives a service more
privileges than the service really needs to have and violates the principle of least privi-
lege [108]. Namely, by granting it the right to issue requests, we increase exposure in case
of a break-in. If an intruder issues requests, the location system will grant access to these
requests.

Due to these reasons, we introduce the concept ofservice trust. If a service that does
not have an access right (i.e., it cannot actively issue requests) is trusted, it is given location

28

information when forwarding an authorized request from someone else. For a trusted
service, the trust assumption is that the service implements access control in the following
way:

• The service ensures that there is an access right for the entity that issued a request.
If this check fails, access will be denied.

• The service then checks whether the entity from which it received the request cor-
responds to the entity that issued the request. If it does, access will be granted. If it
does not, the service must have received a forwarded request. Therefore, the service
has to ensure that the entity from which the service received the request is trusted.
If so, access will be granted, otherwise access will be denied.

Service trust is a hybrid between step-by-step and end-to-end access control, as defined
in Section 2.3.4. There is end-to-end access control since an endpoint can take both the
identity of a client and of a gateway into account when making an access decision. There
is step-by-step access control since a gateway also makes access decisions. End-to-end
access control reduces the influence of an attacker into a gateway. Step-by-step access
control limits the impact of a denial-of-service attack, since unauthorized requests are
thrown away by a gateway already and do not reach an endpoint.

Similar to access rights, we use SPKI/SDSI certificates for defining trusted services.
The entry in the tag section needs to be modified accordingly. For example,(tag (trust

alice)) identifies certificates that declare Alice’s set of trusted services.

Delegation

Each location service has to implement access control, as defined in the previous section.
In particular, when receiving a set of access rights with a request, a service needs to ensure
that these rights grant access to the issuer of the request. However, to reduce overhead or in
the case of low processing power, we do not require each service to validate the potentially
many access rights itself. Instead, a service can delegate this task to another service. For
example, the Calendar service shown in Figure 2.2 is likely to delegate access control to
the People Locator service since both services are run by the same organization and the
People Locator service also needs to validate the access rights. After this validation, the
People Locator service issues an access right (in a certificate) that directly authorizes the
issuer of the request. The service gives this access right to the Calendar service when
forwarding the request. Now the Calendar service has to validate only this access rights
for its access decision, not all the access rights underlying this access right.

29

2.4.4 Lessons

Several lessons learned during the design and implementation of the people-location sys-
tem contributed toward the design of the access-control architecture for information in
pervasive computing described later in this chapter. We now discuss these lessons.

Information-representation scheme. In the people-location system, we rely on a simple
scheme for representing the information to which an access right grants access. In
particular, as shown in Section 2.4.2, we use the userid of an individual. This scheme
is not powerful enough. For instance, the scheme has no support for information
other than location information; the implicit assumption is that access rights grant
access to location information. Therefore, an attack is possible where an individual
exploits an access right to location information for accessing other information that
happens to use the same representation scheme in its access rights. Moreover, the
scheme assumes that all location services assign the same userid to a particular indi-
vidual, which is not a realistic assumption when these services are run by different
entities. These drawbacks lead us to the definition of the information-representation
scheme introduced in Section 2.5.1 for the more general architecture.

Information and constraints. We employ SPKI/SDSI certificates for expressing access
rights. Our notion of an access right given in Section 2.2.2 distinguishes between
the information to which access is granted and the constraints imposed on access-
ing this information. SPKI/SDSI certificates do not support this separation. Their
design assumes that thetag entry of a certificate lists both the information and any
constraints. When combining two certificates, such as the ones shown in Figure 2.3,
SPKI/SDSI’s default combination mechanism performs only simple string compar-
ison operations between the two certificates and does not consider the nature of the
contents in thetag entry. This mechanism makes it difficult to, for example, exploit
the semantics of information for access control. Therefore, for the more general
architecture, we add a new entry to SPKI/SDSI certificates, which lists the informa-
tion to which access is granted (see Section 2.5.3). In Chapter 3, we will exploit this
separation to take the semantics of information into account for access control.

Service trust. The concept of service trust helps only against intrusions into services that
forward requests, but not against intrusions into services that need to issue new
requests. For example, the Device Locator service shown in Figure 2.2 does not
benefit from service trust in case of an intrusion, since it needs to issue a new request
for the location of Alice’s laptop. Another problem with service trust is that it is a
very coarse-grained notion. A service is either trusted or not trusted. For example,

30

it is not possible to specify what actions a service is trusted to perform for what
information. In Chapter 4, we address these two issues by formalizing derivation
properties of information.

Delegation. Delegation of access control aims to avoid redundant validation of access
rights by having the first service that performs this validation issue a summary access
right. However, delegation does not necessarily lead to a decrease in the response
time experienced by a client. In particular, for some asymmetric cryptographic algo-
rithms, such as RSA, issuing a certificate representing an access right is much more
expensive than validating such a certificate. Therefore, delegation pays off only if
many access rights would have to be re-validated by the second service. In general,
checking the validity of access rights is a cheap operation, when compared with the
cost of other operations required for answering a client’s request (e.g., setting up a
secure connection or retrieving the actual location information [61]). Therefore, in
the more general access-control architecture, we do not support delegation of access
control.

Separation between people and devices.In the people-location system shown in Fig-
ure 2.2, we separate between services that locate people and services that locate
devices. This separation is based on the observation that in the latter case, we must
map a person to a device and then locate this device. However, this separation is
artificial. We also need such a mapping for a service that locates people. For exam-
ple, for a service that exploits a calendar for locating a person, we need to map the
person to a file or to a userid used by the calendar application. For a service that
detects a person’s face in a videostream, we must map the person to a set of biomet-
ric parameters. Therefore, in the more general architecture, we no longer separate
between people and device locator services.

Proofs of access.In client-based access control, a client submits a proof of access, which
shows that the client is authorized to access the requested information, to a service.
A proof of access contains the access rights required by the client and instructions
that tell the service how to combine these access rights in order to conclude that
the client should be granted access. In the people-location system, a client submits
only a set of access rights, but no instructions. We chose this solution for simplicity
reasons. However, once we incorporate the semantics of information into access
control, proofs of access will contain not only access rights, but also information
relationships (see Chapter 3). Here, it becomes essential that a client tells a service
how to combine access rights and information relationships. Therefore, in the more
general architecture, we have a client transmit an actual proof of access.

31

Based on the lessons that we learned from the people-location system, we now present
a more general access-control architecture. We first examine what access rights look like
in this architecture (Section 2.5). Then, we describe how we achieve distributed access
control (Section 2.6).

2.5 Access Rights

The discussion in Section 2.4.4 revealed two weaknesses of access rights in the people-
location system. First, the information-representation scheme is insufficient. Second,
when assembling access rights in a proof of access, we also need to include instructions
on how to combine these access rights. In this section, we introduce the information-
representation scheme used in our access-control architecture for pervasive computing.
We also present a formal model of access rights and their combination. Finally, we de-
scribe the digital certificates that we employ for expressing access rights.

2.5.1 Information Representation

We need a representation scheme for the information that an access right grants access to.
We have the following two requirements for this representation:

Service and environment independent.The representation scheme should not bind in-
formation to a service that offers this information. For example, URLs, which are
used for identifying information on the Web, do not fulfill this requirement. If infor-
mation was bound to a particular service, an access right to this information would
also be bound to this service. When multiple services offer the same information,
as it can be the case in pervasive computing, each service requires its own access
rights. This increases the number of access rights that the owner of the informa-
tion needs to define and thus raises the danger of mistakes and information leaks.
The same reasoning calls for an information-representation scheme that is indepen-
dent of the environment in which an access right is used. Having an information-
representation scheme that is service and environment-independent is a common
approach for pervasive computing frameworks that address access control to infor-
mation [66, 39, 51].

Owner of information. Discretionary access control lets the owner of information issue
initial access rights to this information. In order to differentiate between valid and

32

invalid access rights, access control must be able to learn about the owner of infor-
mation for which an access decision has to be made. This should be straightforward,
which suggests that the owner becomes part of the representation scheme for infor-
mation.

These two requirements lead us to represent information in the following way:

(owner, item).type.

Let us elaborate on the various elements of this scheme:

Owner. The owner is responsible for issuing initial access rights to the information de-
scribed by the scheme. For example, if Bob owns his location information, he will
issue initial access rights to his location information.

Item. Information is about a particular item (e.g., Bob, his car, a room in his house, or an
event that he organizes).

Type. Information is of a particular type (e.g., location, activity, financial, or temperature).

Each component of the representation should be associated with a formal description
of the component. For example, the description could say that a public key representing
a particular owner is an RSA public key of 1024 bits. Similarly, it could say that item
Bob is a person or it could define the type “location”. With the help of this description,
a service offering information can ensure that its notion of the information corresponds
to the owner’s understanding, as expressed in an initial access right to this information.
Similarly, a client that exploits an access right to information can ensure that its notion
matches the owner’s understanding.

For the formal description of information, we can exploit descriptions developed for
the Semantic Web, based on OWL [45]. Theseontologiesmake it possible to identify, for
example, different types of information that have the same semantic meaning (e.g., “lo-
cation” and “whereabouts”) or that are expressed in different languages (e.g., “location”
and “Standort”). Using this approach, the description of a component in the information-
representation scheme consists of a URL pointing to an ontology. For example, SOUPA
(Standard Ontology for Ubiquitous and Pervasive Applications) [39] contains both an
OWL representation of “person” (http://pervasive.semanticweb.org/ont/
2004/06/person) and of “location” (http://pervasive.semanticweb.org/
ont/2004/06/location).

33

http://pervasive.semanticweb.org/ont/2004/06/person
http://pervasive.semanticweb.org/ont/2004/06/person
http://pervasive.semanticweb.org/ont/2004/06/location
http://pervasive.semanticweb.org/ont/2004/06/location

With the help of ontologies, we can ensure that different individuals or services agree
on the meaning of a component in the information-representation scheme. For example,
they agree that a particular item is a person, but not a car. However, different individu-
als or services could still use different schemes for naming the same owner or item. For
example, a service could use “(alice, alice).location” when referring to Alice’s location,
where “alice” is Alice’s userid, as used by the service. On the other hand, when issuing
an initial access right to her location information, Alice refers to “(〈Alice’s public key〉,
Alice).location”. (We use〈〉 as a placeholder for the actual public key.) Related to this
observation, we point out that the string denoting the item has meaning only in the names-
pace of the owner of the information. For example, the room that building manager Alice
identifies as “Wean Hall 8220” might not correspond to the room that building manager
Bob identifies as “Wean Hall 8220”. Local namespaces have been used in previous re-
search [47, 87]. They rely on the observation that the existence of a global namespace,
which could avoid this confusion, is unrealistic.

To cope with different naming schemes for the same owner or item, a service must
ensure that for information offered by the service, the owner and the item really corre-
spond to the owner and the item listed in access rights that the service is going to use when
controlling access to this information. This validation can occur manually or automati-
cally. Manual validation can take place when the issuer of an initial access right registers
with the service. For automatic validation, there could be ontologies that relate different
ownership representations and different local namespaces. (Formally, we could also use
bundling-based information relationships, as presented in Chapter 3, for automatic valida-
tion.)

Given the existence of such mappings between owners or items, we assume that all
individuals and services agree on the representation and naming scheme for information.
In addition, for simplicity reasons, we assume that the owner of information is represented
as a public key. Using our representation scheme, we can describe Alice’s location as
follows:

(〈Alice’s public key〉, Alice).location.

Similarly, we can describe the temperature in Wean Hall 8220 as

(〈Public key of building manager〉, WeanHall 8220).temperature.

As mentioned in Section 2.2.2, we do not separate between public keys and their own-
ers. Therefore, Alice’s location information becomes

34

(Alice, Alice).location.

We use the shortcut

owner.type

for representing information where the owner and the item are identical. Using this short-
cut, Alice’s location is represented as

Alice.location.

As outlined in Section 2.2.1, Alice’s location information is not necessarily owned by
Alice. For example, in an enterprise environment, this information could be owned by the
enterprise. In such a scenario, we can represent Alice’s location as follows:

(Enterprise, Alice).location.

In general, a service (i.e., its administrator) decides about ownership of information
provided by the service.

We use this information-representation scheme for describing the information that an
access right grants access to. In Chapter 3, we will show how we can exploit the same
representation scheme in information relationships in order to capture the semantics of
information for access control.

2.5.2 Formal Model

In this section, we present a formal model that defines how access rights can be combined
in proofs of access. Here, we restrict ourselves to access rights that do not include any
constraints. Later, we will extend the formal model to support more complex proofs of
access that take the semantics of information into account (Chapter 3), make gateways
more secure in case of an intrusion (Chapter 4), or enable access rights with constraints
(Chapter 5).

In a distributed environment, multiple entities issue statements, such as access rights
to information or requests for information. Some entities might be malicious, so not all
of these statements will be valid. During access control, it must be possible to authenti-
cate valid statements and to ignore statements that are not relevant. Lampson et al. [81]

35

introduce a theory of authentication, which formalizes authentication in distributed envi-
ronments. In this section, we review this theory and discuss how we use it for dealing with
access rights in proofs of access.

The “speaks-for” Relationship

Lampson et al.’s theory of authentication consists of principals that make statements. Prin-
cipals are either simple or compound. There are two types of simple principals: named
principals and channels. Named principals can be people, machines, roles, or sets of prin-
cipals. Channels are principals that can say things directly, such as a wire, an encrypted
channel, or a network address. Only channels can directly make statements to a computer.
A person, for example, must communicate over a channel to a computer. Compound
principals are built up out of other principals. For example, compound principals allow
principals to act in a particular role. In this thesis, we concentrate on simple principals
(except in derivation-constrained access control in Chapter 4). However, the presented
concepts can also be applied scenarios with compound principals.

For expressing access rights to information, we exploit Howell and Kotz’s “restricted
speaks-for” relationship [68], which is based on Lampson et al.’s “speaks-for” relationship.

We present the relationship based on an example statement. The statementB
T

==⇒ A
denotes that principalB speaks for principalA regarding the statements in setT , that is,
if B issues a statement that is inT , A also issues this statement, or

` (B
T

==⇒ A) ⊃ ((B says s) ⊃ (A says s)) with s ∈ T. (2.1)

(⊃ denotes implication.)

We are interested in statements expressing read access to some information, for ex-
ample, “readC.x” or “read (C, D).x” using the representation scheme introduced in Sec-
tion 2.5.1. In terms of our formal model,C andD are (simple) principals. In particular,C
denotes the principal that owns the information andD is the principal the information is
about.D does not have to be a person, it can also be, for example, a device or a room. In

the rest of this paper, we use the shortcutB
C.x

====⇒ A instead ofB
{“read C.x”}

==========⇒ A. As we
will see below, this speaks-for relationship grantsB access to informationC.x, assuming
thatA itself has access to this information.

36

Access Rights

Speaks-for relationships are derived from access rights. Lampson et al.’s “handoff axiom”
says that such a relationship holds only if it is made by the principal on the right-hand side
of the statement. Formally,

` (A says (B
C.x

====⇒ A)) ⊃ (B
C.x

====⇒ A). (2.2)

A statement of the formA says (B
C.x

====⇒ A) roughly corresponds to an access right
introduced in Section 2.5. (The statement has no support for constraints.) For example,
the access right “Alice grants Bob access to Carol’s location” is expressed in the formal

model asAlice says (Bob
Carol.location

===========⇒ Alice). An access right that does not include a
subject can be represented in the formal model as a set of such statements, one for each
possible principal.

A useful property of the speaks-for relationship is transitivity, or

` (D
C.x

====⇒ B) ∧ (B
C.x

====⇒ A) ⊃ (D
C.x

====⇒ A). (2.3)

Transitivity, together with the handoff axiom, allows for the forwarding of access rights
and defines how clients can combine access rights in a proof of access. We will explore
how a service formally exploits such a proof for its access decision in Section 2.6.2.

2.5.3 Implementation

Similar to the people-location system, we express access rights as SPKI/SDSI digital cer-
tificates [47]. As mentioned in Section 2.4.4, the existing definition of SPKI/SDSI cer-
tificates is not sufficiently powerful for our purposes, since it merges the information to
which access is granted and the constraints on an access right in a single entry. Therefore,
we modify the format slightly and introduce a separate entry for the information to which
access is granted, which allows us to keep this information separate from the imposed
constraints.

We give a sample certificate in Figure 2.4. Theversion entry indicates that we are us-
ing non-standard SPKI/SDSI certificates. Theissuerandsubjectentries list the issuer and
the subject, respectively. Thepermissionentry is our extension to SPKI/SDSI certificates;

37

(cert
(version ‘‘1’’)
(issuer (pub key:alice))
(subject (pub key:bob))
(permission

(information (pub key:alice) alice location))
(tag *))

Figure 2.4: Extended SPKI/SDSI certificate. We show an access right in which Alice
grants Bob access to her location information.pub key:foo stands for foo’s public key.
(Digital signatures are omitted.)

it describes the resource to which access is granted. Currently, we allow only resources
of type information . It is possible to add support for other resources, such as physical
resources (e.g., a projector). As discussed in Section 2.5.1, the information-representation
scheme consists of three parts: the owner of the information (which is a public key), the
item the information is about, and the type of information. Thetag entry lists any con-
straints imposed on the access right. We will take a closer look at constraints in Chapter 5.

2.6 Distributed Access Control

Our access-control architecture is client-based, meaning that a client has to prove to a
service that it is authorized to access the requested information. There are three main
components in this architecture: proof building, access rights storage, and proof verifica-
tion. In terms of proof building by a client, we presented the underlying formal model
in Section 2.5.2. In this section, we discuss the storage of the access rights used in proof
building and the formal validation of a proof of access by a service. In addition, we review
the implementation and deployment of our architecture.

2.6.1 Access-Rights Storage

In our architecture, we assume that a client that has been granted access to information
stores the corresponding access rights locally. As mentioned in Section 1.4, we do not
examine remote certificate discovery in this thesis. Instead, we assume that the issuer of
an access right hands over the corresponding certificate to the subject of the access right,

38

together with any access rights showing that the issuer also has access to the information.

2.6.2 Proof Verification

In Section 2.5.2, we presented a formal model for the composition of access rights in a
proof of access. We now discuss how a service makes an access decision based on proofs
of access represented in this formal model.

When a service receives a request “readD.x” from principal C, it needs to ensure
thatC speaks for a principal on the service’s access control list (“ACL”) for this particular
resource. Abadi et al. [1] introduce the constructD controls t to encode that principalD
is on a service’s ACL for resourcet. The construct is defined as

D controls t ≡ ((D says t) ⊃ t).

As mentioned in Section 2.5.1, ownerD of informationD.x is responsible for defining
the initial access right toD.x, formally,D controls “readD.x”.

WhenC requestsD.x from a service (i.e.,C says “readD.x”), C also needs to submit

a proof of access composed of access rights showingC
D.x

====⇒ D to the service. Given
these two statements and the service’s ACL (i.e.,D controls “readD.x”), the service
concludes “readD.x” and grantsC access toD.x.

In our scenario,C is the channel over which the service receives a request. We assume
that channels are authenticated (e.g., an SSL connection with client authentication), which
lets them speak for a principal,B, at the other end of the channel, orC =⇒ B. PrincipalB
can be a public key. This public key, in turn, can speak for the person owning this public
key. In the rest of this thesis, we leave channels and people away for simplicity reasons.
We will assume that principals are public keys and that they can speak directly to a service.

2.6.3 Implementation

The implementation of our access-control architecture is based on Howell and Kotz’s
framework for client-based access control in Web environments [69]. At the beginning of
the thesis research, this framework was the only implemented client-based access-control
architecture with publicly available source code that provided facilities for storage of ac-
cess rights and building and verification of proofs of access. Another advantage was that

39

the framework expresses access rights as SPKI/SDSI certificates, which we had already
used for the people-location system.

In the access-control framework, proofs of access are implemented as Java classes.
Each axiom in the formal model has its corresponding class. For example, there is a class
for the transitivity axiom (Axiom (2.3)). Each instance of a class is initialized with the
preconditions of an axiom. The initialization values can be instances of proof classes
themselves. Furthermore, each class has a verification method, which ensures that the
preconditions can be combined in the formal way defined by the axiom underlying the
class. This method is called by a service. A class is able to serialize and deserialize
its instance variables. Similar to SPKI/SDSI certificates, a serialized proof of access is
encoded as an S-expression. A service must instantiate only proof classes representing
axioms from our formal model when deserializing a proof of access.

We extended Howell and Kotz’s framework to support the information-representation
scheme introduced in Section 2.5.1 and the modified SPKI/SDSI certificates presented in
Section 2.5.3. Later, we will add additional access-control mechanisms to this architecture.

2.6.4 Deployment

We use the Contextual Service Interface (CSInt) [73] developed for the Aura pervasive
computing project [52] as a testbed for the deployment of our access-control architecture.
CSInt is client/server-based and allows a client to retrieve information from a service using
a simplified SQL query language. It is implemented in Java, exploits HTTP requests and
responses for issuing queries and receiving results, respectively, and encodes SQL queries
and results for these queries in XML. To enable support for client-based access control,
we modified the CSInt as follows:

• In addition to transmitting the various components of an SQL query (i.e., selected
attributes, name of database or table, and where clause) and requirements for the an-
swer to this query (e.g., desired freshness or confidence), we have the CSInt transmit
a proof of access, if desired by a client. Since proofs of access are serialized into S-
expressions, we enhanced the CSInt to convert an S-expression into an XML datas-
tructure (and vice-versa) and to transmit this datastructure. The CSInt is oblivious
to the type of S-expression.

• To achieve confidentiality and integrity of a query and its response, we extended
the CSInt to exploit SSL as its underlying transport protocol. In particular, we use a
modified version of Claymore PureTLS [119]. The modifications allow for the usage

40

of SPKI/SDSI certificates, instead of X.509 certificates. SSL also provides client
authentication, which is required for discretionary access control. An additional
benefit is server authentication to avoid man-in-the-middle attacks.

2.7 Security Model

When building a security mechanism, it is advisable to have a model of the system in which
the mechanism is deployed and of the capabilities of attackers targeting this mechanism.
In this section, we describe the security model underlying our access-control architecture
for pervasive computing.

In our system, there are services that provide confidential information and clients that
access this information. A service can become a client itself. Different administrative
entities control these services. Therefore, before handing confidential information over
to a client, a service must ensure that the client is authorized to access this information.
Namely, a service employs the access-control algorithms described in this thesis.

The offered information can be complex, that is, it reveals other types of information.
Furthermore, access decisions can be constrained based on confidential information about
an individual’s context.

The goal of an attacker is to learn confidential information that the attacker is not
authorized to access. The attacker is not interested in other malicious behavior, such as
modifying information returned by a service. (Though we want to make such behavior
harder by, e.g., using authenticated communication.)

In order to achieve this goal, an attacker can choose between the following actions: An
attacker can send queries to a service and observe their fate. A query is either denied or
granted access. In the latter case, the attacker will see the information that the query asked
for. Alternatively, an attacker can set up its own services and observe queries reaching
such a service. The attacker can also snoop network traffic. Attackers can collaborate.

In this thesis, we do not address the following attacks:

Service-specific attacksallow an attacker to infer confidential information based on knowl-
edge about the properties of a particular service. For example, if the response time
for learning an individual’s location depends on the location of the individual, timing
attacks will become possible. If an individual’s location is derived from the location
of her device, attacks based on individuals swapping devices among each other will
be feasible.

41

Information-specific attacks enable an attacker to infer confidential information from
the current value of information that the attacker is authorized to access. For exam-
ple, for some locations (e.g., a gas station), it is easy to deduce the activity of an
individual being at one of these locations (or at least a small set of possible activi-
ties).

Traffic-analysis attacks let an attacker deduce confidential information by observing which
services exchange traffic with each other. For example, if an attacker knows that cal-
endar information about an individual is accessible only for particular locations of
the individual, the (non)occurrence of queries between the location and calendar
services and a client might allow the attacker to learn the individual’s location.

Statistical-inference attacks let an attacker send multiple queries to (different) services
and derive confidential information that the attacker is not authorized to access. For
example, if Alice learns that Bob and Carol are at the same location by querying
a location service for Bob and Carol’s location and that Carol is in a meeting by
querying an activity service for Carol’s activity, Alice will also figure out Bob’s
activity, though she might not be authorized to access this information.

Service-intrusion attacks allow an attacker to learn confidential information by breaking
into a service offering this information. We ignore this type of attacks in most of the
thesis, except in Chapter 4, where we make services more secure in case of an intru-
sion. We elaborate on the necessary changes to the security model in Section 4.1.

Outside attacks let an attacker access confidential information by exploiting channels
that our system is not aware of. For example, physical observation of a person’s
movement allows an attacker to learn the person’s location, regardless whether the
attacker is authorized to access this information.

2.8 Related Work

In this section, we discuss related work in the areas of people-location systems, information-
representation schemes, access-control logics, and trust-management systems.

2.8.1 People-Location Systems

There are lots of people-location systems; Hightower and Borriello [64] give a comprehen-
sive survey. Many of the systems have been developed to study and evaluate a particular

42

technology for locating people, not to investigate access-control issues that arise when dif-
ferent services for locating people, potentially run by different organizations, are brought
together.

Let us discuss a few exceptions. In Myles et al.’s location system [96], a middleware
service runs access control on behalf of individual location services. We discussed the
drawbacks of a centralized solution in Section 2.3.1. In Spreitzer and Theimer’s loca-
tion system [117], each individual has a personal agent, which gathers location informa-
tion about the individual and which implements access control to this information. While
avoiding a centralized bottleneck, this solution has the drawback that it puts the load of
gathering any statements required for the access decision on these agents. This task can be
expensive, especially when access rights are forwarded. The system is designed to work in
an environment with different administrative entities, although the actual implementation
runs only within a single entity, and the authors do not mention how users specify services
that they trust. Unlike our system, the location policy of a user is always specified by the
user, and the system does not have the flexibility offered by digital certificates. Leonhardt
and Magee’s system [85] also suffers from this weakness. It relies on policy matrices,
which are tedious to define.

2.8.2 Information-Representation Schemes

In this section, we investigate the information-representation schemes used in other perva-
sive computing projects and in other client-based access-control architectures.

Some pervasive computing projects [93, 5, 42] do not elaborate on the representation
and naming schemes for the resources to which access is controlled. They typically assume
that a resource is a physical resource, such as a printer, rather than information.

Pervasive computing projects that focus on controlling access to an individual’s in-
formation [66, 39, 51] employ user-centric access policies. For each individual, there
is an access policy that defines who can access the individual’s personal information,
such as her location information. This approach is similar to ours in that the information-
representation scheme is made globally unique by distinguishing between the individual
the information is about and the type of information. These projects do not elaborate on
the establishment of access policies. Typically, the assumption is that an individual de-
fines policies for information about her. In our representation scheme, by differentiating
between the owner of information and the individual the information is about, we can for-
malize the (distributed) establishment of access policies (implemented as access rights)
and easily support scenarios where an individual does not own her information.

43

Bauer et al. [16] and Howell and Kotz [69] present client-based access-control frame-
works targeted at Web environments. Their information-representation scheme consists of
a single string, containing the URL of a piece of information. A URL has the advantage
that it can be globally unique. The disadvantage is that a URL is bound to the service
providing the information described by the URL. If multiple services offered the same
information about an individual, the owner of this information would have to establish
access rights for each of them. Another disadvantage is that the representation scheme im-
plicitly assumes that information is represented as (globally unique) URLs, but there is no
explicit requirement that enforces this property. Therefore, it is possible to define access
rights that grant access to non-unique information, which is problematic. In our represen-
tation scheme, we achieve global uniqueness by including the owner of information, not
the service offering information. In addition, we make this owner an explicit part of the
scheme and do not assume its implicit presence.

2.8.3 Access-Control Logics

Apart from Lampson et al.’s theory of authentication, there are many other logics for
formalizing access control. Even when we restrict ourselves to logics targeted at per-
vasive computing, the list remains impressive. For example, there are REI [74], COBRA-
ONT [36], SOUPA policy ontology [37], Cerberus’ logic [5], environment roles [42],
E-Wallet’s OWL-based [45] rules [51], and Myles et al.’s P3P-based [44] rules [96]. How-
ever, most of them support only the encoding of an access policy, but not the encoding of
credentials that show that an entity fulfills an access policy. Having only the encoding of
an access policy can be sufficient in a centralized access-control architecture. However,
a distributed access-control architecture, which is what we want for pervasive computing,
requires credentials so that the access-control load can be shared and multiple entities can
issue statements related to access control.

Apart from the speaks-for logic, there are a few other (application-specific) access
control logics that support encoding of credentials [7, 16, 72, 93]. Some of them [7, 16]
are similarly expressive as the speaks-for notation, which is a propositional modal logic.
The logics allow the modeling of beliefs, which makes it straightforward to incorporate,
for example, communication channels between entities or forwarding of access rights into
the logic. Other logics [72, 93, 87] are based on (a subset of) first-order logic, which makes
it possible to issue multiple access rights in a single statement. For instance, there needs
to be only a single statement in order to grant all office owners access to the videostream
from a camera in their offices. Propositional logic requires a statement for each office
owner. SD3 [72] supports the encoding of credentials by including the public key of the

44

entity establishing a relation in the global name of the relation. RT [87] pursues a similar
concept. In Minami and Kotz’s logic [93], an entity keeps meta rules that define what other
entities the entity trusts to evaluate its rules or to establish facts.

We choose the speaks-for logic as the foundation for our formal model since it is well
known. However, we emphasize that all the concepts presented in this thesis could also be
incorporated into an access-control logic based on first-order logic, if required.

2.8.4 Trust-Management Systems

Howell and Kotz’s access-control framework [69] exploits SPKI/SDSI certificates [47]
for expressing access rights. SPKI/SDSI certificates, together with mechanisms for the
specification and evaluation of these certificates, are an example of atrust-management
system. Trust management is a “unified approach to specifying and interpreting security
policies, credentials, and relationships; it allows direct authorization of security-critical ac-
tions” [22]. We could have replaced SPKI/SDSI with an alternative trust-management sys-
tem, such as PolicyMaker [21], KeyNote [22], Active Certificates [28], SD3 [72], RT [88],
or X.509 Proxy Certificates [128]. (We list SD3 and RT both in this and the previous sec-
tion because they come with a distinct formal model, which does not apply to the other
systems.) KeyNote and X.509 Proxy Certificates are as powerful as SPKI/SDSI certifi-
cates. PolicyMaker and Active Certificates are more powerful since an access condition
can be expressed in a general-purpose programming language. SD3 has built-in support
for automatic retrieval of certificates from remote hosts. We decided to use SPKI/SDSI
certificates since they are standardized and, slightly extended, are sufficiently powerful to
implement our formal model. (SPKI/SDSI certificates have advantages when compared
with alternatives, such as transitivity control and group-based access rights, which, how-
ever, are not relevant for this thesis.)

2.9 Summary

In this chapter, we introduced access policies, which define who should be able to access
what confidential information under what constraints. With the help of access rights, we
achieve the distributed specification of access policies. We also reviewed four architectures
for the enforcement of access policies, in particular, centralized, service-based, client-
based, and end-to-end access control.

We presented two specific sample implementations. The first one is employed for

45

securing access to a people-location system, the second one is a more general, client-
based architecture targeted at pervasive computing. Its underlying formal model is based
on Lampson et al.’s theory of authentication. We will use this architecture and the formal
model as a base for addressing the remaining challenges to access control in the context
of pervasive computing.

In the next chapter, we discuss how we capture the semantics of complex information
for access control and how we reduce the number of access rights that individuals need to
define.

46

Chapter 3

Information Relationships

In pervasive computing, there will be a multitude of services that provide potentially confi-
dential information about an individual, such as her location, her personal files, her email,
her calendar, or her activity. Some of this information might be offered by multiple ser-
vices. In addition, a person might be a member of multiple environments over time. There-
fore, having an individual issue access rights per client to be granted access, per service,
per environment, and per type of information is not scalable. Role-based access con-
trol [100] addresses the first axis. Our information-representation scheme introduced in
Section 2.5.1 allows for service-independent and environment-independent access rights.
In this chapter, we concentrate on the fourth axis and examine ways to limit the number
of types of information for which access rights need to be issued. To achieve this goal, we
exploit relationshipsbetween information for access control. Information relationships
are also useful for controlling access to complex information, such as a calendar entry
that reveals location and activity information, since they can capture the semantics of this
information [63].

3.1 Overview

Information relationships reduce the number of access rights that an individual needs to
define. Consider the case of Alice managing access rights to her personal information,
such as her location or her activity information. In a naı̈ve solution, whenever she wants
to grant someone access to all her personal information, she has to issue a separate access
right for each type of personal information. In a better solution, Alice can bundle these
different types of information and grant access rights to information bundles. When she

47

wants to grant someone access to her personal information, she now has to issue only a
single access right. By bundling information, Alice establishes information relationships.
The access-control mechanism exploits these relationships in order to derive individual
access rights.

Another example demonstrating the usefulness of information relationships involves
complex information. If the current entry in Carol’s calendar says that she is having a
meeting with Bob, only people who are at least allowed to access Carol’s and Bob’s lo-
cation and activity information should have access to the calendar entry. To implement
this rule, Carol should grant Alice an access right to this entry only if Alice already has
access rights to Carol’s and Bob’s location and activity information. However, this ap-
proach is tedious and might lead to consistency problems if Bob revoked an access right
to his location or activity information. Instead, access control should be aware of the se-
mantics of information and know that calendar information contains location and activity
information. We can use information relationships to capture the semantics. In the exam-
ple, calendar information is related to location and activity information, and access control
should be able take this relationship into account.

In this chapter, we make a client-based access-control architecture aware of informa-
tion relationships that are common and important in pervasive computing. This way, we
can run access control as often as possible in a fully distributed fashion. For more complex
information relationships, it is possible to employ a centralized rule engine to reason about
information. In particular, our contributions include

• the concept of information relationships as a first-class citizen in a client-based
access-control architecture,

• a formal model for incorporating relationships into access control,

• a prototype implementation based on this model, and an evaluation of this imple-
mentation.

We present three types of relationships that are important for pervasive computing
(Section 3.2) and incorporate these relationships into our formal model of distributed ac-
cess control (Section 3.3). We discuss trade-offs between access rights and information
relationships (Section 3.4). While individuals can define their own information relation-
ships, we also give them the option to exploit information relationships defined by a stan-
dardization organization (Section 3.5). We examine how clients reason about relationships
in proof building (Section 3.6), discuss a prototype implementation (Section 3.7), and an-
alyze its complexity and performance (Section 3.8). Finally, we examine an alternative

48

implementation of information relationships in the context of Bauer’s proof-carrying au-
thorization [13] (Section 3.9).

3.2 Information Relationships

An information relationship states that a client should be granted access to a requested
information item if the client already has access rights to information item(s) related to
this item. Since a relationships affects access control to the requested information item,
only the owner of this item can establish relationships for this item. We now describe a set
of information relationships that are particularly relevant to pervasive computing.

Bundling-based relationships: Though there might be many different types of informa-
tion about an individual, some of them have identical access requirements. An indi-
vidual should be able to bundle such information and to issue only a single access
right for the entire bundle. For example, assume that Alice wants to grant multiple
people access to both her location and her activity information. Therefore, for each
person, she needs to issue two access rights. Instead, Alice should be able to bun-
dle her location and activity information in her personal information and to grant
each person only a single access right to her personal information. Access control
will then derive individual access rights for Alice’s location and activity information
from the bundle. In this way, we reduce the number of access rights that Alice needs
to establish and the possibility of mistakes and information leaks.

Only Alice should be able to bundle her location information in other information.
If we allowed Bob to bundle Alice’s location information, he could bundle this in-
formation in his own personal information. Since Bob has access to his personal
information, he would also be granted access to Alice’s location information.

Combination-based relationships: Complex information is information that reveals other
types of information. For example, a map shows the location of multiple people or
Carol’s calendar entry provides her location and the location of Bob, who is attend-
ing a meeting with Carol. Based on this relationship between the complex and the
revealed pieces of information, it should be possible to make access rights to the
complex information depend on access rights to the pieces. For example, a client
can access a map only if the client has access rights to all the people’s location
shown on the map. Similarly, a client can access Carol’s calendar only if the client
has access rights to Carol’s and Bob’s location information.

49

Only Carol should be able to define a relationship for her calendar entry. In partic-
ular, it is up to Carol to decide whether she wants to define such a relationship in
the first place. If Bob agrees to a meeting with Carol, he will have to rely on Carol
not to make this information publicly available. If Carol is malicious, she will not
respect Bob’s privacy and let anyone access the corresponding calendar entry (or
she will exploit other channels for providing the information in this entry). Only
laws and regulations can avoid this information leak. However, if Carol is well be-
haved, she will want to respect Bob’s privacy and she will want to take his access
rights into account when deciding about whom to grant access to the calendar en-
try. Combination-based relationships make it easy to incorporate Bob’s access rights
since Carol does not even need to know about these access rights. We discuss trade-
offs between defining an access right to complex information and a relationship for
the same information in more detail in Section 3.4.

Granularity-based relationships: Some information, such as location information, has
different levels of granularity. There is an information relationship between the dif-
ferent levels: access rights to coarse-grained information should be derivable from
access rights to fine-grained information. For example, if Bob had an access right
to Alice’s fine-grained location information (e.g., “Wean Hall 8220”), he automati-
cally should also have an access right to Alice’s coarse-grained location information
(e.g., “Wean Hall”). There should be no need for Alice to establish the second access
right.

With the exception of combination-based relationships, information relationships are
static and require few updates by the individuals defining them. This property obviously
holds for granularity-based relationships. For bundling-based relationships, we expect an
individual to organize her information once and to make only a few changes after that. (If
an individual did not want to define her own relationships, she could exploit global rela-
tionships, see Section 3.5.) Therefore, defining bundling-based information relationships
will be a rare task.

We envision that services will automatically define combination-based relationships on
behalf of individuals. For example, when Carol enters a calendar entry, the calendar appli-
cation will automatically issue the corresponding relationship. Therefore, the potentially
dynamic nature of combination-based relationships does not affect individuals.

Our solution has the benefit that it decreases the number of access rights that an indi-
vidual needs to specify. This reduction becomes even more important when access rights
are not established once and then left unchanged, but when they are defined in a dynamic
way. For example, Alice might want to grant access to Bob only for a short period of time

50

in order to enable Bob to fulfill a task. If access rights are dynamic, information relation-
ships will decrease the number of access rights that Alice needs to establish on an ongoing
basis.

An obvious question is whether the three information relationships discussed in this
section are common and important. We consider our approach of running access con-
trol by relating information as a dual to running access control by relating people (i.e.,
role-based access control [100]). For each type of information relationship, there exists a
corresponding, major concept in role-based access control. In particular, bundling-based
relationships correspond to assigning roles to people. Combination-based relationships
are similar to resources that require the presence of multiple roles. Granularity-based rela-
tionships are similar to hierarchical role schemes. This observation suggests that the three
relationships are common and sufficient, and so far this has held up in our examples.

There are other concepts in role-based access control, such as separation of duty, which
ensures that a person cannot be a member of conflicting roles, or sessions, which regulate
role activation. While it is possible to come up with information relationships that re-
semble these concepts, we strive to keep information relationships simple. This goal is
based on the observation that, in pervasive computing, access rights and information re-
lationships will often be managed by individuals. Role-based access control assumes the
existence of dedicated administrators with a thorough understanding of access control.
This assumption will probably not hold for pervasive computing.

3.3 Formal Model

In this section, we extend the formal model introduced in Section 2.5.2 to support the in-
formation relationships introduced in the previous section. We conclude by demonstrating
the application of the model in a more involved scenario.

An information relationship implies that if a principal,B, has access to some informa-
tion items,Ei.xi, B should also have access to a (related) item,D.x. Formally, we use
E1.x1 ⊗ E2.x2 ⊗ . . . −→ D.x for expressing this relationship, and we want the axiom

` (E1.x1 ⊗ E2.x2 ⊗ . . . −→ D.x (3.1)

∧ B
E1.x1=====⇒ A1 ∧B

E2.x2=====⇒ A2 ∧ . . .)

⊃ (B
D.x

====⇒ C)

to hold for certain conditions on the principalsEi, their informationEi.xi, and the princi-

51

palsAi andC. In Sections 3.3.1, 3.3.2, and 3.3.3, we show that instantiating Axiom (3.1)
in different ways straightforwardly leads to the concepts of bundling-based, combination-
based, and granularity-based information relationships, respectively. For each type of re-
lationship, we also discuss plausible conditions on the various entities in the axiom and
pick the most useful one.

In addition to formalizing the application of information relationships in access con-
trol, we also need to formalize their establishment. Since access to the information items
on the left-hand side of a relationship also grants access to the item on the right-hand side,
only the principal owning the information on the right-hand side or a principal speaking
for that principal regarding the information should be able to establish the relationship, or

` (F says (E1.x1 ⊗ E2.x2 ⊗ . . . −→ D.x)) ∧ (F
D.x

====⇒ D) (3.2)

⊃ (E1.x1 ⊗ E2.x2 ⊗ . . . −→ D.x).

For example, only Alice as the owner of her location information can bundle this in-
formation in her personal (or some other) information. Similarly, only Carol as the owner
of her calendar can define a relationship stating that anyone who has access to her (and
potentially other people’s) location and activity information can also access her calendar
entry.

We now look at useful instances of Axiom (3.1).

3.3.1 Bundling-Based Relationships

Limiting the number of information items on the left-hand side of Axiom (3.1) to one item
corresponds to the concept of bundling-based relationships. For example, the statement
Alice.personal−→ Alice.location denotes that information Alice.location is bundled in
information Alice.personal, that is, if someone has access to Alice’s personal information,
he should also have access to her location information.

There are two plausible conditions on the various entities in Axiom (3.1). The first one
requiresA1 = C, or

` (E1.x1 −→ D.x ∧B
E1.x1=====⇒ A1) ⊃ (B

D.x
====⇒ A1). (3.3)

The second one isA1 = E1 andD = C, or

52

` (E1.x1 −→ D.x ∧B
E1.x1=====⇒ E1) ⊃ (B

D.x
====⇒ D).

We choose the first condition since the second one is too limiting. For example, given

E1.x1 −→ D.x, B
E1.x1=====⇒ C, andC

D.x
====⇒ D, it should be possible to concludeB D.x

====⇒
D, which the second condition does not permit.

Our formal model allows individuals to bundle some of their information in someone
else’s information. For example, people collaborating on a project can bundle information
that is relevant to the project in information owned by the project manager. The project
manager can then grant access to the information bundle.

Our discussion assumes that an individual establishes all her bundling-based relation-
ships. However, many individuals might establish the same types of relationships. There-
fore, it should be possible for a standardization organization to establish global bundling-
based relationships, to which individuals can subscribe. We discuss this concept in Sec-
tion 3.5.

3.3.2 Combination-Based Relationships

Not limiting the number of information items on the left-hand side of Axiom (3.1) cor-
responds to the concept of combination-based relationships. For example, the statement
Alice.location⊗ Bob.location−→ Map Service.map denotes that the map offered by a
map service can be accessed by anyone who has access to both Alice’s and Bob’s loca-
tion information. (The assumption is that only Alice’s and Bob’s location is shown on the
map.)

Again, there are two plausible conditions on the various entities in Axiom (3.1). We
can requireA1 = E1, A2 = E2,..., andC = D, or

` (E1.x1 ⊗ E2.x2 ⊗ . . . −→ D.x (3.4)

∧ B
E1.x1=====⇒ E1 ∧B

E2.x2=====⇒ E2 ∧ . . .)

⊃ (B
D.x

====⇒ D). (3.5)

The second option isA1 = A2 = . . . = C, which is an extension of the condition for
bundling-based relationships, or

53

` (E1.x1 ⊗ E2.x2 ⊗ . . . −→ D.x

∧ B
E1.x1=====⇒ C ∧B

E2.x2=====⇒ C ∧ . . .)

⊃ (B
D.x

====⇒ C).

This condition requires a single entity that has access to all ofE1.x1, E2.x2,..., and
D.x, through whichB would then acquire its access rights. However, this requirement is
unrealistic in practice and does not fit the intuitive model of combination-based relation-
ships. Therefore, we pick the first condition.

3.3.3 Granularity-Based Relationships

Granularity-based information relationships are a special case of bundling-based relation-
ships. For example, Alice could define two types of location information, such as Al-
ice.locationfine and Alice.locationcoarse, and establish

Alice.locationfine−→ Alice.locationcoarse.

However, requiring individuals to introduce separate types of information for different
granularities is tedious and not intuitive. Instead, we observe that granularity-based access
rights to information can be represented as an access right that has a constraint on the
returned information. For example, if Bob had access to Alice’s coarse-grained location
information and asked for her location, the result would have to be coarse grained. This
result (e.g., (Building Manager, Wean Hall 8220) using our information representation
scheme) is itself an item about which there is some information (such as its granularity).
Constraints are not a new concept in access control. For instance, an access right can
be constrained to be valid only during office hours. By extending our formal model to
support constraints, we can express that Bob has access to Alice’s location at fine or coarse
granularity as follows:

Bob Alice.location
==================⇒

?result.granularity≥fine
Alice.

(For readability reasons, we put constraints under the arrow, the statement remains a
speaks-for operator.)

54

Table 3.1: Example statements. Alice and Bob grant Carol and Dave access to their per-
sonal information using information relationships.

(1) Alice says Alice.personal−→ Alice.location [?result.granularity≥ fine]

(2) Alice says Carol
Alice.personal

===========⇒ Alice

(3) Alice says Dave Alice.location
====================⇒

?result.granularity=coarse
Alice

(4) Bobsays Carol Bob.location
==================⇒

?result.granularity≥fine
Bob

(5) Location Servicesays Alice.location [?result.granularity= fine]
⊗ Bob.location [?result.granularity= fine]
−→ (Location Service, Wean Hall 8220).people

3.3.4 Example

In this section, we demonstrate the application of our formalism in an example scenario.
The scenario involves a location service that provides the identity of the people in a room,
two users Alice and Bob managing their access rights, and two users Dave and Carol trying
to access Alice’s or Bob’s confidential information.

Alice bundles fine-grained location information (and potentially other) information in
her personal information (Statement (1) in Table 3.1). She grants Carol access to her
personal information (2) and Dave access to her coarse-grained location information (3).
Bob grants Carol access to his fine-grained location information (4). The information
provided by the location service should be accessible only if a client has access rights to
the location information of all individuals in a room, that is, we require a combination-
based relationship. Assuming that only Alice and Bob are in Wean Hall 8220, the service
defines a corresponding relationship (5).

Carol queries for the people in Wean Hall 8220. She is granted access based on the
information relationship of the location service (5), Alice’s information relationship (1),
Alice’s access right (2), and Bob’s access right (4). Dave also issues a query and is denied
access, since the intersection of ?result.granularity= coarse (3) and ?result.granularity=
fine (5) is empty.

As demonstrated in this section, our scheme makes it straightforward to run access
control based on information relationships. Moreover, there is no need for the different
types of information to be owned by the same entity.

55

3.4 Discussion

There are two options for granting a principal access to complex information. First, the
owner of the information can give the principal an access right to the information, which
lets the principal access the information in an unrestricted way. Second, the owner can
define a combination-based relationship for the information, which allows the principal to
access the information if the principal can access all the other information revealed by the
complex information. Note that the owner can use both options simultaneously. In this
section, we discuss trade-offs between the two options. Furthermore, we investigate an
alternative approach, in particular, selective disclosure of complex information

Let us illustrate the trade-offs with an example. Carol grants her executive assistant,
Alice, an access right to her calendar, or

Carol says Alice
Carol.calendar

============⇒ Carol.

Furthermore, Carol defines a combination-based relationship that lets principals access
her calendar entry if they can access the location and activity information revealed by the
entry, or, assuming that Carol is currently meeting with Bob,

Carol says

(Carol.location⊗ Carol.activity ⊗ Bob.location⊗ Bob.activity −→ Carol.calendar).

In this scenario, Alice has unrestricted access to Carol’s calendar entry, whereas other
principals can access this entry only if they have access to Carol and Bob’s location and
activity information. The information relationship prevents clients other than Alice from
learning information revealed by the complex information in case they do not have access
rights to the revealed information. However, since Alice has an explicit access right to
Carol’s calendar entry, Alice could learn Bob’s location or activity information without
being in the possession of an access right granted by Bob to this information. We could
avoid this information flow by forbidding owners of complex information to issue access
rights to complex information. Nonetheless, we support this option because an owner of
information could circumvent the restriction by using distribution channels our system is
not aware of. Furthermore, our example reflects already existing, widely accepted social
behavior. In particular, executive assistants are typically expected to have access to their
boss’ calendar, and people meeting with their boss know that the executive assistant can

56

access the calendar. In pervasive computing, we use this social behavior as a guide for
designing our security mechanisms. This approach is consistent with the second privacy
design guideline issued by the European Disappearing Computer Initiative [79]. In partic-
ular, the guideline says:

Search for existing solutions in the physical world or in old systems for the
similar class of problem/service, and understand the way in which new tech-
nologies change the effects of classic issues.

Finally, if we tried to prevent owners of complex information from issuing access
rights to the information, the usefulness of a service could be drastically reduced, and
individuals could be tempted to use other services that lack access control entirely instead.
We emphasize that these observations apply specifically to pervasive computing, but not
necessarily to other environments (e.g., military or financial services).

When agreeing to meet with Carol, Bob needs to trust Carol to properly deal with his
location or activity information during the time of the meeting. For example, Bob trusts
Carol not to grant anyone an access right to her calendar entry. To establish this trust, Carol
could make Bob aware of access rights that she issued to her calendar entry. If Bob did not
agree with Carol’s choices, he could ask Carol not to list his identity in her calendar entry
or he could refrain from meeting with her. Furthermore, for auditing reasons, the calendar
service could notify Bob whenever there is a query for the calendar entry in question.

Access control based on a combination-based relationship requires that a client has
access to all types of information listed on the left-hand side of the relationship. As an
alternative, a service providing complex information could mask information to which a
client does not have access rights and selectively grant access to parts of the complex infor-
mation. However, this approach can cause information leaks based on statistical inference.
Assume that Bob is meeting with Carol in Wean Hall 8220. Dave has access to Carol’s
location and activity information. He can also access Bob’s location information. Dave
then queries Carol’s calendar entry and submits the access rights issued by Carol. The cal-
endar service masks Bob’s identity, and Dave learns that Carol is in Wean Hall 8220 and
that Carol is in a meeting. Next, Dave queries Carol’s entry a second time and submits the
access right issued by Bob. The calendar service masks Carol’s identity and Bob’s activity,
and Dave learns that Bob is in Wean Hall 8220. Dave can now combine the results of the
two queries and infer that Bob is in a meeting. Since Dave does not have an access right
to Bob’s activity information, there is an information leak.

By not masking information, we can avoid this information leak for a single service.
However, Dave might be able to infer the same knowledge by using multiple location and

57

activity services, as illustrated in Section 2.7. This leak is difficult to avoid for multiple
services; we do not address it in this thesis.

3.5 Global Information Relationships

Many individuals might define the same kind of bundling-based relationships. We present
two approaches that allow an individual to exploit global bundling-based relationships,
instead of having to define her own relationships. For both approaches, we assume that a
global relationship is issued by a standardization organization on behalf of an individual.
There can be many such organizations. The approaches differ in the requirements that
need to be satisfied in order for a global relationship to become valid.

The first approach has the advantage that it does not require any changes to the existing
formal model, but it gives a lot of power to a standardization organization. The second
approach does not suffer from this drawback, but it requires an extension to the formal
model.

3.5.1 Delegation-Based Approach

In the first approach, in order for a global relationship to become valid, an individual
needs to grant the standardization organization access to her information. We call this
approach “delegation-based” since the individual delegates all her capabilities to decide
about the information’s access rights and relationships to the organization. We illustrate
the approach with an example. Alice lets organization ACME decide the composition
of her personal information. ACME decides that medical information is part of personal
information and issues

ACME says (Alice.personal−→ Alice.medical). (3.6)

In addition, Alice grants the organization access to her medical information, or

Alice says (ACME Alice.medical
===========⇒ Alice). (3.7)

This statement defines a speaks-for relationship between ACME and Alice regarding
Alice.medical, which we can exploit to establish Alice.personal−→ Alice.medical from
Statement (3.6) according to Axiom (3.2).

58

ACME bundles Alice.medical in Alice.personal. This approach works well under the
assumption that both ACME and Alice agree that the composition of Alice.personal is
managed by ACME. However, it could break if there was no such agreement. For example,
it is possible that ACME bundles Alice.medical not only in Alice.personal, but also in
other information owned by Alice (e.g., in Alice.health). Therefore, an access right to
Alice.health would also grant access to Alice.medical. Alice would not want this property
if she was not aware of this additional relationship and assumed that only she managed the
composition of Alice.health.

To avoid this conflict, ACME should not bundle information owned by Alice in other
information owned by Alice. Instead, ACME should bundle the information in information
owned by ACME. Formally,

ACME says ((ACME, Alice).personal−→ Alice.medical). (3.8)

To allow Alice to issue access rights to her personal information, ACME needs to state

ACME says (Alice
(ACME, Alice).personal

==================⇒ ACME). (3.9)

Alice can exploit ACME’s definition of her personal information by issuing an access
right to (ACME, Alice).personal. If she did not want to use ACME’s definition, she could
issue an access right to her own personal information, that is, Alice.personal.

The approach requires that Alice grants ACME access to each type of information that
is part of ACME’s notion of personal information (e.g., Statement (3.7)). However, Alice
might not know for what information she has to issue such a statement, because she does
not know or does not want to know what information is part of ACME’s notion of personal
information. (The whole point of letting ACME decide about relationships is to remove
these decisions from Alice.) Similarly, Statements (3.8) and (3.9) assume that ACME is-
sues an information relationship and an access right for each individual that wants to use
ACME’s relationships. However, if ACME was a standardization organization, it might be
oblivious to the individuals who are using its specifications. The two observations suggest
that digital certificates implementing these three statements should allow for wildcards.
For example, in a certificate expressing Statement (3.7), Alice should be able to list a
wildcard (or a set of possible values) instead of “medical”. Similarly, in certificates ex-
pressing Statements (3.8) and (3.9), ACME should be able to include a wildcard, instead
of “Alice”.

59

3.5.2 Naming-Based Approach

The first approach hurts the principle of least privilege [108], since it grants access rights
to the standardization organization, but the organization does not actually need to access
this information. Our second approach does not have this disadvantage. It gives the orga-
nization the capability to define a bundling-based relationship for information owned by
an individual, but it does not grant access rights to the organization. Therefore, we call this
approach “naming-based”. Its drawback is that it requires the introduction of an additional
axiom to the formal model.

In terms of the example introduced in Section 3.5.1, we use

ACME
{“bundle Alice.medical”}

===================⇒ Alice

to denote that ACME can establish relationships for Alice.medical. Only Alice and
principals speaking for Alice regarding{“bundle Alice.medical”} can establish this state-

ment. Remember thatB A.x
====⇒ A is just an abbreviation forB

{“read A.x”}
==========⇒ A.

Formally,

` ACME
{“bundle Alice.medical”}

===================⇒ Alice

∧ ACME says (Alice.personal−→ Alice.medical)

⊃ (Alice.personal−→ Alice.medical).

In this way, ACME can define a bundling-based relationship for Alice.medical, with-
out having an access right to this information. Note that the owners of the two types of
information in the relationship must correspond to Alice. In particular, ACME must not
be allowed to bundle Alice.medical in its own information. This relationship would grant
ACME access to Alice.medical, which we want to avoid.

Allowing ACME to bundle Alice.medical in information that is owned by Alice can
result in the problem discussed in Section 3.5.1, that is, ACME bundles information in
some of Alice’s information, without Alice being aware of. There, we worked around
the problem by having ACME bundle information owned by Alice in information owned
by ACME. As mentioned above, this is not an option here. Instead, Alice and ACME
can adopt a naming scheme for information that avoids disagreement between Alice and
ACME about who is responsible for the composition of some of Alice’s information.

60

For example, ACME could prefix the type of information with its name, that is, instead
of bundling Alice.medical in Alice.personal, ACME could bundle Alice.medical in Al-
ice.ACME personal.

Similar to the first approach, in a digital certificate expressing the permission to define
relationships, a wildcard could be used instead of “medical”. Furthermore, it is possible
to limit the scope of a certificate. For example, it could allow bundling of information in
Alice.ACME personal, but not in other information owned by Alice.

3.6 Proof Building

In our distributed access-control architecture, we have a client ship a proof of access to
a service. As mentioned in Section 2.6.2, a proof of access needs to show that a client
speaks for the owner of the requested information regarding this information. In that sec-
tion, proofs of access consisted solely of combined access rights (and instructions on their
combination). However, when access control exploits information relationships, proofs of
access can also contain relationships. Figure 3.1 illustrates a proof of access with an infor-
mation relationship. The structure of a proof corresponds to the types of axioms required
for validating the proof.

As shown in Section 3.3, for each type of information relationship, Axiom (3.1) is
instantiated in a different way. Another characteristic that differentiates the relationships
from each other is how they are used in proof building. We now discuss proof building for
each relationship.

3.6.1 Bundling-Based Relationships

We first illustrate how proof building exploits bundling-based relationships. A client
collects access rights and information relationships received from individuals. It stores
speaks-for statements derived from access rights or from other speaks-for statements in a
graph where nodes represent principals and edges represent information. For a request, the
algorithm traverses the graph in a breadth-first way to find a proof of access, starting with
the owner of the requested information and ending at the client. During this graph traver-
sal, when the information in a candidate edge does not match the requested information,
the algorithm looks at all bundling-based relationships that have the requested information
on their right-hand side and checks whether the left-hand side of the relationship matches
the information in the candidate edge. (If there is a hierarchy of bundling-based relation-

61

Axiom (3.3)

Bob Alice.location
===========⇒ Alice

���������

Axiom (2.2)
XXXXXXXXX

Axiom (3.2)

Bob
Alice.personal

===========⇒ Alice Alice.personal−→ Alice.location

Access right

Alice says

Bob
Alice.personal

===========⇒ Alice

Information relationship

Alice says

Alice.personal−→ Alice.location

Figure 3.1: Structured proof. The proof shows that Bob can speak for Alice regarding
her location information, based on an access right to Alice’s personal information and an
information relationship between Alice’s personal and her location information.

ships, this step requires exploration of multiple relationships.) If so, the algorithm accepts
the candidate edge and the edges connected to this edge become new candidate edges.
Figure 3.2 illustrates this algorithm.

The algorithm looks at each edge at most once. Therefore, if there aren speaks-for
statements and no information relationships, its worst-case complexity isO(n). If there
are alsom information relationships, the algorithm will look at an information relation-
ship at most once for each candidate edge. The worst-case complexity becomesO(nm).
Although complexity is multiplicative, we expect proof building to be practical. First, the
absolute value ofn will be larger for the case without information relationships, since this
case requires separate access rights for information with identical access requirements.
Second, we expect principals to define information relationships in a way such that infor-
mation is bundled only in a small number of information bundles and to keep the hierar-
chies of bundling low. We measure proof-building time in Section 3.8.2.

Global relationships could make proof building more complex since they require ad-
ditional speaks-for statements for their establishment. For example, establishing the rela-
tionship in Statement (3.8) requires a statement that shows that ACME can speak for Alice
regarding Alice.medical. If a client has to locate the corresponding access right in its col-
lection of access rights and information relationships during proof building, proof building

62

A.xA.y

A.x
A

A.x

C B
A.y

Figure 3.2: Proof building. The goal is to prove “C
A.x

====⇒ A”. The search starts atA. It

locates “B A.x
====⇒ A” and tries to prove “C A.x

====⇒ B”. The search locates “C
A.y

====⇒ B” and
uses “A.y −→ A.x” to get the required information.

will become more complex. However, it is possible to prevent this increase in complexity.
Namely, a client should insert a statement defining a global relationship into its collection
of access rights and relationships only if the relationship can actually be established. In
this way, we ensure that there are only valid information relationships in the collection.
Therefore, the client should locate the access right that establishes the relationship when
it inserts the global relationship into its collection, not during proof building.

3.6.2 Combination-Based Relationships

We do not expect clients to exploit combination-based relationships in proof building.
Instead, these relationships are used by services. A combination-based relationship is
tightly coupled to the information that a service provides (e.g., for a map service, the
relationship consists of all the people shown on the map). Therefore, it is straightforward
for a service to establish the corresponding relationship and to exploit it for access control.
In particular, for each information item on the left-hand side of the relationship, the service
has the client build a proof of access. The service then aggregates these individual proofs
of access and its combination-based relationship into a summary proof.

Proof building by a client can be difficult in this scenario since the client might not
know how the individual proofs of access should look like and the service cannot inform
the client of their nature without leaking information. For example, if a map service had
the information relationship Alice.location⊗Bob.location−→ Map Service.map, a client
would have to build proofs of access for Alice.location and Bob.location. However, the
client might not know who is on the map, and the service cannot tell it without leaking
location information about Alice and Bob. We present a solution for this problem in Chap-

63

ter 6.

3.6.3 Granularity-Based Relationships

For granularity-aware access control, the algorithm introduced in Section 3.6.1 must be
extended to take constraints on access rights and information relationships into account.
For example,

Carol Alice.location
==================⇒

?result.granularity≥fine
Bob

and

Bob Alice.location
====================⇒

?result.granularity=coarse
Alice

can be concatenated to

Carol Alice.location
====================⇒

?result.granularity=coarse
Alice.

Since granularity-based relationships can be directly encoded in access rights instead
of requiring separate information relationships, there will be no extra information relation-
ships, which reduces the complexity of proof building.

In summary, our proof-building algorithm is simple, but it has proved sufficient for our
application scenarios. We can also trade off computation vs. storage. Instead of computing
a proof upon a request, a client can store the closure of its access rights and update this
closure whenever it receives an access right or information relationship. Alternatively,
instead of employing a brute-force prover, we can use more sophisticated theorem provers.
For example, Bauer et al. [16] employ the Twelf logical framework [104] for building
proofs of access.

3.7 Implementation

Our implementation is based on the client-based access-control framework introduced in
Section 2.6, to which we added support for building proofs of access involving information
relationships, as outlined in Section 3.6.

64

(bundling-relationship
(version ‘‘1’’)
(issuer

(information (pub key:alice) alice location))
(subject

(information (pub key:alice) alice personal)))

Figure 3.3: Bundling-based information relationship. Alice’s location information is bun-
dled in her personal information. (The digital signature is omitted.)

We use extended SPKI/SDSI certificates for expressing and storing bundling-based
information relationships. We give an example in Figure 3.3. In the certificate, Alice’s
location information is bundled in her personal information. The certificate needs to be
signed by the owner of the information in theissuerentry, that is, Alice. For some scenar-
ios, such as global relationships, an entity other than this owner may sign the certificate.
We currently do not support this feature. In general, SPKI/SDSI certificates do not support
speaks-for statements where the principal making the statement does not correspond to the

principal on the right-hand side of the speaks-for relationship (e.g.,A says (B
C.x

====⇒ D).

3.8 Performance Analysis

We have deployed access control with information relationships in the context of Aura
services that provide calendar and location information. In this section, we evaluate our
implementation, both with measurements and analytically.

We analyze our proposed information relationships along three axes: their effect on the
number of issued access rights, on proof-building time, and on request-processing time.
We take our measurements on an unloaded Pentium IV/2.5 GHz with 1.5 GB of memory,
Linux 2.4.20, and Java 1.4.2.

3.8.1 Number of Access Rights

We examine how bundling-based relationships affect the number of access rights that an
individual has to issue. In particular, we compare the number of statements to be made
in a world with information relationships to the corresponding number in a world without

65

information relationships.

Let us first consider the case with information relationships. Assume that there is
a full, tree-based hierarchy consisting ofl levels of bundling-based relationships, where
l = 1 corresponds to the base case consisting of a root node and some leaf nodes. Each
parent node hasm children (i.e.,m types of information are bundled in each parent node).
There arek clients. Each of them is assigned to a single node in the hierarchy, meaning
that the client is given an access right to the information covered by the node. There are
different ways to distribute the clients in the hierarchy. In this scenario, regardless of the
clients’ distribution, the number of access rights to be issued is alwaysk and the number
of relationships is always

∑l
i=1 mi. The first curve in Figure 3.4 shows the overall number

of access rights and relationships for different values ofl. We choosek = 50 andm = 3.

We want to know the number of access rights that would have to be issued if there were
no relationships, but thek clients should have access to the same information as in the case
with relationships. This number depends on the distribution of these clients in the tree. We
examine three different distributions. The first one is artificial and presents the best case in
possible savings of issued access rights: allk clients are assigned to the root node. Without
relationships, this scenario would requirekml access rights (since there areml leaf nodes),
as shown by the second curve in Figure 3.4. The second distribution is also artificial and
presents the worst case in possible savings: allk clients are distributed randomly among
the ml leaf nodes. This scenario would requirek access rights, as shown by the third
curve. The third distribution is a more realistic one: we distribute thek clients evenly
among thel + 1 layers of nodes in the hierarchy. This would requirek

l+1

∑l
i=0 mi access

rights, as shown by the fourth curve. As we can see in Figure 3.4, with the exception of the
worst case, where relationships become unnecessary, relationships can lead to a significant
decrease in the number of issued access rights and information relationships.

We believe that it is intuitive for individuals to define relationships since the underlying
paradigm is well known and already used for organizing files in a filesystem or digital
pictures in a photo album. If the individual did not want to define her own relationships,
she could always exploit relationships defined by third entities.

Similar to bundling-based relationships, granularity-based relationships require indi-
viduals to issue fewer access rights, where the decrease is proportional to the available
levels of granularities. Combination-based relationships also reduce the number of access
rights since they prevent a service from having to issue separate access rights for complex
information.

66

1 2 3 4
0

100

200

300

400

500

600

700

800

900

1000

Number of levels

N
um

be
r

of
 is

su
ed

 s
ta

te
m

en
ts

With relationships
W/o relationships − root only
W/o relationships − leaves only
W/o relationships − mixed

Figure 3.4: Number of issued statements. We compare the number of issued access rights
and relationships in a world with relationships to the number of issued access rights in a
world without relationships, for different levels of bundling-based relationships and distri-
butions of clients in this hierarchy.

3.8.2 Proof-Building Time

We examine the cost of proof building, as explained in Section 3.6. Our experiment con-
sists of locating a set of speaks-for statements in a pool of statements and then assembling
them in a proof of access. We consider up to five sequentially connected, bundling-based
relationships. Because of manageability reasons, we do not expect individuals to create
more than five levels of bundling-based relationships in their information hierarchies.

Our experimental setup covers a worst-case scenario: We pick five among 50 possible
principals and create a sequential path of access rights between them (i.e., a principal
delegates its access right to the next principal in the path). All experiments will locate
this path, since there is considerable variation for different paths. The results that we
present are consistent with results for other paths. We then put the access rights into
a pool, which we expand by adding random access rights. The random access rights
form a directed graph where each recipient of an access right is (indirectly) reachable
from the issuer of the first access right in the predetermined path and where none of the
recipients is on this path (i.e., we do not allow shortcuts). We randomly set the information
in each access right to one of the possible information items covered by the bundling-
based relationships. An experiment is characterized by a number of random access rights
and a number of relationships and is run ten times. Figure 3.5 reports the mean proof-

67

100 200 300 400 500 600 700 800
0

5

10

15

20

25

Number of searched access rights

P
ro

of
 b

ui
ld

in
g

tim
e

[m
s]

no bundling−based relationships
one bundling−based relationship
three bundling−based relationships
five bundling−based relationships

Figure 3.5: Proof-building time. The graph shows the mean proof-building time for differ-
ent numbers of bundling-based relationships. For a fixed number, there is a linear increase
in the number of searched access rights.

building time. According to Section 3.6, the worst-case complexity is multiplicative in the
number of speaks-for statements and information relationships. Our results confirm that
the increase is linear for a particular number of relationships.

In practice, information relationships do not necessarily lead to increased proof-building
cost. In particular, if there are relationships, there typically will be fewer access rights in
a client’s pool, which makes proof building cheaper. Therefore, for a given value on the
x-axis in Figure 3.5, the various proof-building times are not directly comparable. The
actual cost strongly depends on the number and types of information relationships. Over-
all, as we will show in Section 3.8.3, the cost of building a proof is comparable to the
cost of processing a request. We also observe that the numbers presented in Figure 3.5
cover a worst-case scenario. First, we require four access rights for the proof of access;
we expect this number to be smaller in practice. Second, our experimental setup ensures
that all access rights in a user’s collection might be explored for proof building. In real
collections, many of the access rights in a collection will not be explored. For example,
a search for access rights to Alice’s location information typically will not explore access
rights to Bob’s location information.

68

Table 3.2: Client-response time. Mean and standard deviation of elapsed time for security
operations (in bold) and for gathering information [ms].

Entity Step µ (σ)
Both SSL Socket creation 53 (6)
Service Access control 3 (2)
Service Gather location information 56 (7)

Total 129 (13)

3.8.3 Client-Response Time

We study the influence of bundling-based relationships on client-response time in our pro-
totype implementation. As mentioned in Section 3.6, the other types of relationships do
not have a negative influence on complexity. We measure the response time experienced
by a client when retrieving location information from a service. We assume that the client
contacts a service providing people-location information. This service fingers the Linux
desktop computer of the queried individual and tries to determine the individual’s location
from her activity.

We run the client and the location service service on an unloaded host. In addition,
there is another host that runs a database storing digital certificates and static information
about users (e.g., their userids). The client and the service contact this database to retrieve
any data required for generating a request for information or processing such a request.

Our asymmetric cryptographic operations required for setting up SSL connections and
validating the signatures of certificates employ 1024 bit RSA keys. An experiment is run
100 times. We report the mean and standard deviation (in parentheses). Since we are
not interested in proof-building time for these experiments, we assume that clients have
pre-built proofs.

In the first experiment, Alice grants Bob access to her location information in an access
right. Bob submits the corresponding proof to a location service, which validates it and
locates Alice. The mean response time is 129 ms (13 ms). More detailed results are in
Table 3.2. Access control takes only a few milliseconds, the main cost is validating the
signature of the certificate. Gathering the location information is the most expensive step.
Setting up an SSL connection requires two costly RSA decryption/signing operations for
client and server authentication. Access control and setting up SSL are CPU bound and
will benefit from faster hardware.

69

0 1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

200

Number of relationships

C
lie

nt
 r

es
po

ns
e

tim
e

[m
s]

Figure 3.6: Client-response time. The elapsed time increases linearly with the number of
bundling-based relationships.

In the second experiment, Alice grants Bob access to her location information via a
variable number of sequentially connected, bundling-based relationships. The results are
in Figure 3.6. Note that the scaling of the y-axis is different from the scaling in Figure 3.5.
The figure shows that client-response time increases linearly by about 7 ms for each addi-
tional relationship. The main reasons for the increase are increased transmission cost and
the validation of an additional signature.

3.9 Proof-Carrying Authorization

We have incorporated information relationships into Lampson et al.’s theory of authenti-
cation. It is possible to add information relationships to other access-control logics. As
a proof of concept, let us explore this addition for Bauer’s proof-carrying authorization
framework [13]. This framework consists of an application-specific access-control logic,
a higher-order logic, and a client-based access-control architecture targeted at Web en-
vironments. To prove soundness of the application-specific logic, Bauer gives the logic
a semantics by defining all its operators in the higher-order logic, which is known to be
sound. (A logic is sound if any provable statement is true in all semantic models of the
logic.) Let us now take a closer look at a relevant subset of the application-specific logic
and then incorporate information relationships into the application-specific logic.

70

3.9.1 Overview

The application-specific logic is similar to Lampson et al.’s theory of authentication. Prin-
cipals can express beliefs with thesays operator. Thegoal constructor describes the URL
that a client wants to access. It has two parameters: a URL and a nonce to avoid replay
attacks. A client,B, issues a request forURL by statingB says (goal(URL, nonce)),
wherenonce is given to the client by the contacted service. In order to be granted access,
the client needs to prove that the owner of the information to which the URL is pointing,
A, also issues this statement, orA says (goal(URL, nonce)). The client can exploit two
ways of delegation for this purpose: Thespeaksfor operator transfers all of a principal’s
access right to another principal, or

` (A says (B speaksfor A)) ∧ (B says (goal(URL, nonce)))

⊃ (A says (goal(URL, nonce))). (3.10)

Thedelegate operator transfers only the access right for a particular URL, or

` (A says (delegate(A, B,URL))) ∧ (B says (goal(URL, nonce)))

⊃ (A says (goal(URL, nonce))).

3.9.2 Bundling-Based Relationships

We now incorporate bundling-based relationships into the logic. In particular, we intro-
duce a new operator and an axiom exploiting this operator and prove soundness of the
axiom by proving it as a theorem in the higher-order logic.

We add an operatorbundles(A,URLpersonal ,URLlocation) expressing that principalA
wants anyone that is granted an access right toURLpersonal also to be granted an access
right toURLlocation . The following axiom formalizes the application of this operator:

` (A says (bundles(A,URLpersonal ,URLlocation)))

∧ (A says (delegate(A, B,URLpersonal)))

⊃ (A says (delegate(A, B,URLlocation))). (3.11)

An alternative option, as suggested by Bauer [14], is

71

` (A says (bundles(A,URLpersonal ,URLlocation)))

∧ ((B says (goal(URLpersonal , nonce))) ⊃ (A says (goal(URLpersonal , nonce))))

⊃ ((B says (goal(URLlocation , nonce))) ⊃ (A says (goal(URLlocation , nonce)))),

which expands the definition of thedelegate operator. The first option seems to fail
to grant a principalC access toURLlocation based on forwarded access rights, such as
A says (delegate(A, B,URLpersonal)) andB says (delegate(B, C,URLpersonal)),
sinceA says (bundles(A,URLpersonal ,URLlocation)) cannot be combined with the sec-
ond statement. However, given the first two statements, we can prove the statement
A says (delegate(A, C,URLpersonal)), which can be combined with the third statement.
Therefore, both options are equally expressive; we adopt the first one in this section.

Note that both options do not allow principalC to be granted access based on state-
mentsA says (delegate(A, B,URLlocation)) andB says (delegate(B, C,URLpersonal))
and the given information relationship. The difficulty is that the principal entitled to define
information relationships for some information is not bound to this information (as it is
the case in our information-representation scheme).

In Section 3.9.3, we will see that thebundles operator is a special case of thecombines
operator, which we will use for combination-based relationships. Therefore, we could de-
fine thebundles operator in terms of thecombines operator and prove soundness only
for this operator. However, for presentation reasons, we prove soundness also for the
bundles operator. Proving soundness is easier for this operator and helps understand the
more complex proof for thecombines operator.

Using Bauer’s notation, we define thebundles operator in the higher-order logic as
follows :

bundles(A,URLpersonal ,URLlocation)
def
=

∀B.(A says (delegate(A, B,URLpersonal)))

→ (A says (delegate(A, B,URLlocation))).

Based on this definition, we can prove Axiom 3.11 as a theorem in the higher-order
logic. We give this proof in Table 3.3. The proof usesP andL instead ofURLpersonal and
URLlocation , respectively. It is based on Bauer’s notation and refers to several theorems
proved by Bauer [16, Chapter 3].

72

Table 3.3: Proof of Axiom 3.11

1 A says (bundles(A, P, L)) premise
2 A says (delegate(A, B, P)) premise
3 [∀B′.A says (delegate(A, B′, P)) → A says (delegate(A, B′, L))] assumption
4 A says (delegate(A, B, P)) → A says (delegate(A, B, L)) ∀B e 3
5 (∀B′.A says (delegate(A, B′, P)) → A says (delegate(A, B′, L)))

→ (A says (delegate(A, B, P)) → A says (delegate(A, B, L))) → i 3-4
6 A says ((∀B′.A says (delegate(A,B′,P))→A says (delegate(A,B′,L)))

→(A says (delegate(A,B,P))→A says (delegate(A,B,L)))) SAYS-I2 5
7 A says (∀B′.A says (delegate(A, B′, P))

→ A says (delegate(A, B′, L)))
def
= e 1

8 A says (A says (delegate(A, B, P))
→ A says (delegate(A, B, L)))) SAYS-I3 6,7

9 A says (A says (delegate(A, B, L))) SAYS-I3 2,8
10 A says (delegate(A, B, L)) SAYS-TAUT 9

3.9.3 Combination-Based Relationships

To incorporate combination-based relationships into the logic, we introduce an opera-
tor combines(A,URLcalendar , B,URLlocation , C,URLactivity , . . .) expressing that princi-
palA wants anyone who is granted an access right obtained from principalB toURLlocation

and who has access rights obtained from principalC to URLactivity (and who has poten-
tially other access rights) to have access rights forURLcalendar . We formalize the applica-
tion of this operator as follows:

` (A says (combines(A,URLcalendar , B,URLlocation , C,URLactivity , . . .)))

∧ (B says (delegate(B, D,URLlocation)))

∧(C says (delegate(C, D,URLactivity)))

∧ . . .

⊃ (A says (delegate(A, D,URLcalendar))). (3.12)

We define thecombines operator in the higher-order logic as follows:

73

combines(A,URLcalendar , B,URLlocation , C,URLactivity , . . .)
def
=

∀D.(B says (delegate(B, D,URLlocation)))

∧ (C says (delegate(C, D,URLactivity)))

∧ . . . → (A says (delegate(A, D,URLcalendar))).

Based on this definition, we can prove Axiom 3.12 as a theorem in the higher-order
logic. We give this proof in Table 3.4. The proof usesCA, LO , andAC instead of
URLcalendar , URLlocation , andURLactivity , respectively. It refers to several theorems proved
in Bauer [16, Chapter 3]. In particular, it refers to SAYS-I3’, which is a generalized version
of SAYS-I3 [16, p. 45], or

` (A says (B ∧ C → D)) ∧ (A says B) ∧ (A says C)

⊃ (A says D). (SAYS-I3’)

Note that since thesays operator is defined in terms of SAYS-I3, it needs to be
redefined in terms of SAYS-I3’.

As mentioned before, thebundles operator is a special case of thecombines opera-
tor. In particular,

bundles(A,URLpersonal ,URLlocation) ≡ combines(A,URLlocation , A,URLpersonal).

3.9.4 Granularity-Based Relationships

It would also make sense to incorporate granularity awareness into Bauer’s application-
specific logic. Namely, if an entity had an access right to a URL, the entity should also have
access rights to all the directories listed in the URL. However, since the logic is oblivious
to the precise representation scheme of the information to which access is granted, we
cannot formalize this concept in the presented application-specific logic.

3.9.5 Discussion

We have defined formal models for information relationship-aware access control in the
context of both Lampson et al.’s theory of authentication (short: TOA) and Bauer’s application-

74

Table 3.4: Proof of Axiom 3.12.

1 A says (combines(A,CA, B,LO , C,AC)) premise
2 B says (delegate(B, D,LO)) premise
3 C says (delegate(C, D,AC)) premise
4 [∀D′.B says (delegate(B, D′,LO)) ∧ C says (delegate(C, D′,AC))

→ A says (delegate(A, D′,CA))] assumption
5 B says (delegate(B, D,LO)) ∧ C says (delegate(C, D,AC))

→ A says (delegate(A, D,CA)) ∀D e 3
6 (∀D′.B says (delegate(B,D′,LO))∧C says (delegate(C,D′,AC))→A says (delegate(A,D′,CA)))

→(B says (delegate(B,D,LO))∧C says (delegate(C,D,AC))→A says (delegate(A,D,CA))) i 4 5
7 A says

(∀D′.B says (delegate(B,D′,LO))∧C says (delegate(C,D′,AC))→A says (delegate(A,D′,CA)))

→(B says (delegate(B,D,LO))∧C says (delegate(C,D,AC))→A says (delegate(A,D,CA))) SAYS-I2 6
8 A says (∀D′.B says (delegate(B,D′,LO))∧C says (delegate(C,D′,AC)))

→A says (delegate(A,D′,CA)))
def
= e 1

9 A says (B says (delegate(B,D,LO))∧C says (delegate(C,D,AC))

→A says (delegate(A,D,CA))) SAYS-I3 7,8
10 A says (B says (delegate(B, D,LO))) SAYS-I2 2
11 A says (C says (delegate(C, D,AC))) SAYS-I2 3
12 A says (A says (delegate(A, D,CA))) SAYS-I3’ 9-11
13 A says (delegate(A, D,CA)) SAYS-TAUT 12

75

specific logic (short: ASL). Let us now elaborate on a few differences between the two
formal models.

For TOA, we distinguish between the establishment of information relationships (Ax-
iom (3.2)) and their application in access control (Axioms (3.3) and (3.4)). For ASL, we
do not have this separation (Axioms (3.11) and (3.12)). We choose this approach since it
is consistent with the different designs for dealing with speaks-for relationships in TOA
and in ASL. In particular, the handoff axiom in TOA (Axiom (2.2)) defines the establish-
ment of a speaks-for relationship between two principals, that is, the rule has a speaks-for
operator in its conclusion. ASL has no such rule. Instead, as shown by Axiom (3.10), the
speaks-for relationship is defined and applied in a single statement. Furthermore, differ-
entiating between the definition of a relationship and its application in ASL would have
required a method for identifying valid statements that establish relationships. In TOA,
this identification is made easy by the inclusion of the owner of information in the in-
formation representation scheme. However, in ASL, the representation scheme does not
include this owner.

For many purposes, not distinguishing between the establishment and application of
a speaks-for relationship or an information relationship is sufficient. However, there are
cases where the additional flexibility offered by differentiating between the two concepts
proves useful. In terms of speaks-for relationships, TOA allows the establishment ofC =⇒
A out ofB =⇒ A andB says (C =⇒ A), which is not possible for ASL. In this way,B can
let C speak forA without having to giveC all of B’s access rights by lettingC speak for
B. To work around this problem, ASL provides thedelegate operator, which allowsB to
transfer only a subset of its access rights toC. In terms of information relationships, TOA
supports relationships that are defined by an entity different from the entity issuing an
access right to the information on the right-hand side of the relationship, as demonstrated
in the context of global information relationships, which is not possible for ASL. However,
if necessary, we can introduce additional axioms into ASL which support more flexible
speaks-for and information relationships.

We have proved soundness of the axioms that incorporate information relationships
into ASL. We have not proved soundness of the corresponding axioms in TOA. However,
the similarity between TOA’s and ASL’s axioms suggests that soundness could be proved
if we defined TOA’s axioms in Bauer’s higher-order logic.

Incorporating a new formal axiom into our access-control architecture requires the
definition of a Java class that encapsulates the axiom, as discussed in Section 2.6.3. Fur-
thermore, the proof-building algorithm needs to be modified to take the new axiom into
account. In summary, incorporating a new axiom requires source-code changes. An ad-
vantage of ASL is that ASL does not require source-code changes, since it uses the Twelf

76

logical framework [104] for building and verifying proofs of access. In terms of proof
building, an axiom is represented in the prover directly in its logical form. The intro-
duction of a new axiom simply requires the addition of a corresponding tactics to the
prover [16, p. 61]. In terms of proof verification, ASL employs a preprocessor that rejects
illegal axioms, replaces digital signatures with a special axiom, and ensures that the proof
tries to prove the expected statement. This preprocessor needs to be made aware of a newly
introduced axiom. After the preprocessing step, ASL has the proof verified by Twelf. This
verification step does not require any changes for a new axiom.

3.10 Related Work

There are several areas of research that are relevant to our work. As mentioned in Sec-
tion 1.2.2, pervasive computing projects that focus on controlling access to information [38,
51, 66] have not studied access control to complex information. Let us review some other
related work, namely, in the areas of bundling information, threshold constructs, and in-
formation derivation.

The concept of bundling information has been used in environments other than per-
vasive computing. For example, individuals store files belonging to the same project in
the same directory or they keep pictures from a trip in the same gallery. In the context
of object-oriented databases, Rabitti et al. [106, 19] observe that objects stored in a cen-
tralized database can be organized in a hierarchical fashion, showing how an object is
composed of objects at successively lower levels. The authors exploit this observation to
assign (positive or negative) access rights to an object. Objects at a lower level inherit
an access right, unless they are explicitly assigned a different access right. Our bundling-
based relationships have the advantage that they can be established in a distributed way.
Similar to Rabitti et al., Jajodia et al. [71] present several possibilities for inheriting access
rights by organizing subjects, resources, and types of access rights in hierarchies. Their
model applies only to centralized environments.

Combination-based relationships are related to threshold constructs in trust-management
systems, such as SPKI/SDSI [47], KeyNote [22], or RT [88]. These constructs require that
multiple principals issue an access right to a principal before this principal can access
information. For satisfying this requirement, all access rights issued by the various prin-
cipals must grant access to thesameinformation. Therefore, we cannot use threshold
constructs for controlling access to complex information. Namely, a principal should be
able to access complex information only if the principal has access rights todifferentkinds
of information, potentially issued by different principals.

77

Atluri and Gal [9] examine a centralized “information portal”, in which information
items are derived from base information items. An administrator can grant explicit access
rights to items. In addition, if a principal has access rights to all base information items
used for deriving a new item, the principal will also have access to the derived item. This
concept sounds similar to combination-based relationships. However, the motivations for
the two concepts are different. In the earlier work, information is derived from other in-
formation, therefore, access rights to the new information depend on access rights to the
base information. In our work, complex information reveals other information, but is not
actually derived from this information. Combination-based relationships have the advan-
tage that they do not assume a centralized environment, where an administrator defines
how information is derived.

Similar to Atluri and Gal, Myers and Liskov [95] study information confidentiality in
an information derivation scenario. Their approach is based on flow control, and they label
information with its access policy. If new information is derived from base information,
the label of the new information will be determined from the labels of the base information
such that only entities being able to access all the base information have access to the de-
rived information. Myers and Liskov perform their research in the context of downloaded
program code, which needs to be prevented from leaking information.

3.11 Summary

In this chapter, we showed how to take the semantics of complex information into account
for access control in pervasive computing. In particular, we capture the semantics with
information relationships. Relationships also decrease the number of access rights than
an individual needs to issue. We proposed making such relationships first-class citizens
in access control, identified three types of information relationships that are important in
pervasive computing, formalized their establishment and application in access control, and
integrated support for them in a client-based access-control architecture.

Our sample implementation and its deployment demonstrate the feasibility of our ap-
proach. Its performance is competitive. Based on the complexity analysis of proof build-
ing and its measurement-based validation, we anticipate small cost for building proofs in
future pervasive computing environments.

For complex information, its owner needs to decide whether to establish a combination-
based relationship for the information. The owner can also issue explicit access rights to
the information. For other types of information, the owner has to decide whether to define
bundling-based information relationships for the information. Whereas both combination-

78

based and bundling-based information relationships can reduce the number of actual state-
ments that an owner of information needs to make, these relationships also increase the
set of options that our access-control architecture makes available to the owner. The avail-
ability of more options does not necessarily lead to an improvement in terms of usability
of our architecture. In particular, in order to exploit the new options, an owner of infor-
mation needs to be aware of them and know how they work. We expect the new options
to be intuitive. However, only a large-scale deployment of information relationships can
validate this expectation.

In the next chapter, we examine how we can make services that derive information
more secure in case of an intrusion.

79

80

Chapter 4

Derivation-Constrained Access Control

Access control ensures that only authorized clients get access to confidential information
provided by a service. Often, when a client issues a request for information provided a
service, this service acts as a gateway and issues further requests for information to other
services, acting as endpoints. For example, a people-location service can issue a request
for the location of a device when receiving a request for the location of a person. A ser-
vice providing health information might issue queries for a person’s medical information
(heart rate, blood pressure,..), as delivered by wearable sensors, when receiving a query
for a person’s health. There could also be multiple gateways between the client and the
endpoint(s).

This level of indirection makes access control difficult. On the one hand, a gateway
needs access rights in order to retrieve information from other services. On the other hand,
granting access rights to a gateway makes the gateway vulnerable in case of an intrusion.
Namely, an intruder into the gateway has access to any information that the gateway is
authorized to get, and the intruder can actively issue requests for information to other
services. Services will answer these requests if the gateway is authorized to access the
requested information.

The conventional solution to this problem exploits short-lived access rights. In partic-
ular, when a client issues a request for information to a gateway, the gateway is granted
short-lived access rights, which allow the gateway to temporarily retrieve the information
required for answering the client’s request from a service. A drawback of this solution is
its lack of flexibility. The solution is easy to implement if the entity granting access to the
gateway and the client asking for information are identical, but it becomes more difficult if
they are not. One of the difficulties is that the entity granting access might be offline upon
a request and thus not be able to issue access rights.

81

Where is Alice?
Service

Where is Alice’s
laptop? Service

Client People−Location Laptop−Location

Figure 4.1: Gateway. The people-location service acts as a gateway between the client and
the laptop-location service.

In this chapter, we proposederivation-constrained access control, where an endpoint,
before returning information to a gateway, requires the gateway to prove that the gateway
is asking for this information in order to answer an authorized request for derived informa-
tion sent to the gateway by a client. If there is no such request, an intruder into the gateway
will not be able to prove that the gateway is asking for the information on a client’s be-
half. Therefore, the endpoint will not grant the gateway (and the intruder) access to the
requested information.

4.1 Overview

Let us illustrate derivation-constrained access control with an example application, which
we will use throughout this chapter. There is a service that locates people and a service
that locates laptops (see Figure 4.1). The latter service locates people indirectly by locating
their laptops, that is, the people-location service acts as a gateway and contacts the laptop-
location service upon a client’s request for a person’s location. Assume that Bob asks
the people-location service for Alice’s location information. The people-location service
then asks the laptop-location service for the location of Alice’s laptop. Using derivation-
constrained access control, the laptop-location service now makes the people-location ser-
vice prove that the people-location service is issuing this request in order to answer Bob’s
authorized request for Alice’s location and that the location of Alice’s laptop should be
used for deriving Alice’s location.

Derivation-constrained access control does not suffer from the drawback that we ob-
served for a solution based on short-lived access rights. Our approach requires the entity
that grants access to the information provided by an endpoint to specify what information
is derived from this information. However, there is no need to issue these specifications
upon a request; they need to be issued only when there is a change in the derivation prop-
erties of information. Therefore, the entity does not need to be online when a request is
made.

For this chapter, we extend the security model introduced in Section 2.7. We assume

82

that gateways are not malicious to start with, but that they become corrupted if an attacker
breaks into them. In the case of corruption, an attacker has full control over a gateway and
uses the gateway to contact other services. We assume that clients that are authorized to
get information offered by a gateway and corrupted gateways do not collude. Similarly,
we assume that services and corrupted gateways do not collude.

The contributions of this chapter are

• the concept of exploiting derivation properties of information as a first-class citizen
in a client-based access-control architecture,

• a formal model for incorporating derivation properties into access control,

• a prototype implementation based on this model, and an evaluation of this imple-
mentation.

We start by discussing some background material (Section 4.2). We introduce derivation-
constrained access control (Section 4.3) and incorporate it into our formal model (Sec-
tion 4.4). We apply the formal model to two different example scenarios (Section 4.5) and
present a security analysis (Section 4.6). Finally, we discuss a prototype implementation
(Section 4.7) and analyze its performance (Section 4.8).

4.2 Background

In this section, we discuss several application scenarios for gateways and contrast the
approaches chosen in related work with derivation-constrained access control.

There are two types of gateways. The first type of gateways has the property that an
authorized client has access rights both to the information offered by a gateway and to
the information provided by an endpoint. For example, Alice has access to both her raw
medical information, as collected by individual information services (i.e., sensors), and
her health status, as derived by a gateway. In another example, she can access both her
calendar information, as provided by a calendar application, and her location information,
as derived from her calendar information by a gateway.

There has been a lot of work on this type of gateways [53, 69, 78, 81, 97, 115]. Be-
cause a client has access rights to the information offered by a service, this work relies on
delegation chains and lets the client delegate its access rights to a gateway. In the rest of
this paper, we call this kind of gatewaysdelegation gateways.

83

The second type of gateways has the property that an authorized client has access rights
to the information offered by a gateway, but the client does not have access rights to the
information offered by an endpoint. For example, a face detection application acts as a
gateway and extracts somebody’s location from a videostream. Though Alice’s location
can be derived from a videostream and Alice can access her location information, she
cannot access the videostream directly. In another example, Alice might have access to
Bob’s location information, but she does not have access to Bob’s calendar, from which a
gateway derives his location. Finally, a gateway can derive the location of a person from
the location of her laptop. A company might decide that, for administrative reasons, its
employees should not have access rights to their laptop’s location information. On the
other hand, an employee should have access rights to her location information, which can
be derived from her laptop’s location information.

Related work has largely ignored the second type of gateways. Delegation chains are
not applicable here, since the client does not have access rights to the information offered
by an endpoint. Instead, derivation gateways are typically assumed to have separate ac-
cess rights to information provided by an endpoint. Therefore, access control ignores that
this information is used by a gateway for deriving other information, which makes the
gateway vulnerable in case of an intrusion. In the rest of this paper, we call this kind of
gatewaysderivation gateways. Derivation-constrained access control exploits derivation
properties of information and makes a gateway prove to an endpoint that the gateway is
asking for information in order to answer a client’s authorized request for derived infor-
mation. Derivation-constrained access control has the additional benefit that a gateway
does not have to make an access decision. Only endpoints need to make such decisions.
Therefore, we can run access control in an end-to-end way.

We introduce support for derivation gateways by formalizing derivation properties of
information. With the help of these properties, we can tie a gateway’s request for infor-
mation to a client’s request for derived information and exploit this knowledge in access
control. There is no need to specify derivation properties for each request, they need to be
defined only when there is a change in the derivation properties of information.

Derivation-constrained access control also supports delegation gateways. Previous
work that addresses the problem of gateway corruption for delegation gateways [53, 78,
81] has a client delegate short-lived access rights to a gateway. Derivation-constrained
access control follows the same approach. Compared with previous work, its advantage
is that it allows a client to hand over only the specific set of access rights required for
answering the client’s request to a gateway, not all of its access rights.

84

4.3 Derivation-Constrained Access Control

We now present the design of derivation-constrained access control. Since delegation gate-
ways are a subset of derivation gateways, we focus our description on derivation gateways.
In Section 4.5.2, we present an example demonstrating the usage of derivation-constrained
access control for delegation gateways.

Derivation-constrained access control requires two basic components. First, we need
derivation-constrained access rights, which constrain access rights to an entity such that
the entity has to prove that it is asking for the information listed in the access right in order
to answer an authorized request for derived information. Second, in order to be able to
identify derived information, we need formalderivation propertiesbetween information a
gateway asks for and information a client asks for.

Instead of having two separate components, it is possible to directly include derivation
properties in access rights. This approach has the drawback that it increases the number
of access rights that need to be issued. However, it turns out that the approach restricts
the flexibility of intruders that have broken into a gateway. We discuss this trade-off in
Section 4.6.

We now examine access rights and derivation properties in more detail and describe
their application in derivation-constrained access control.

4.3.1 Derivation-Constrained Access Rights

As mentioned in Section 2.2.2, an access right can have constraints associated with it.
In derivation-constrained access control, a constraint requires that the information in the
access right is used for answering a request for derived information, as discussed in Sec-
tion 4.1. We call access rights having such a constraintderivation-constrained access
rights.

In our example application, Alice’s company, as the owner of Alice’s laptop, defines a
derivation-constrained access right stating that the people-location service can access the
location of Alice’s laptop.

4.3.2 Derivation Properties

We need derivation properties to tie information asked for by a gateway to information
asked for by a client. In particular, a derivation property states thatissuer information

85

is derived fromsubject information. Issuer information is the information offered by a
service. A gateway uses the issuer information to derive the subject information.

We require that only the owner of the issuer information can specify a valid derivation
property for this information. The reason for this requirement is that a derivation property
is used for controlling access to the issuer information. If a random entity was able to
define derivation properties for the issuer information, the client could define a derivation
property having information that the client owns as subject information. Therefore, the
client would be able to send an authorized request for this subject information to a gate-
way. Assuming the gateway is granted access to the issuer information in a (derivation-
constrained) access right, the gateway could then successfully query a service for this
issuer information and leak the (derived) information to the client.

The same issuer information can show up in multiple derivation properties. For exam-
ple, Alice’s current calendar entry could be used for deriving both her current location and
her current activity. Similarly, subject information can occur in multiple derivation prop-
erties. For example, Alice’s current location could be derived from her current calendar
entry or from her laptop’s current location.

Let us revisit our example application. Alice’s company, as the owner of Alice’s laptop,
defines a derivation property having the laptop’s location information as issuer information
and Alice’s location information as subject information.

4.3.3 Access Control

We now discuss how derivation-constrained access rights and derivation properties are
used in client-based access control.

When sending a request for information to an endpoint, a gateway checks whether
there are access rights that grant the gateway access to the requested information. The
gateway first tries to exploit access rights that are not derivation-constrained. If there is
no such access right, the gateway tries to exploit derivation-constrained access rights and
derivation properties. In this case, it needs to assemble a proof of access for the following
facts:

• There must be one or a chain of derivation-constrained access rights that grant access
to the requesting gateway.

• There must be a derivation property having the requested information as issuer in-
formation.

86

• There must be a request from a client to the gateway asking for the subject informa-
tion in the derivation property.

• There must be one or a chain of access rights that grant the client access to this
subject information.

• To avoid replay attacks, the client’s request needs to be fresh, that is, the service
must not have seen it before.

In our example application, the people-location service requires both Alice’s derivation-
constrained access right and the corresponding derivation property. In addition, it needs a
fresh request from, for example, Bob asking for Alice’s location information and an access
right granting Bob access to this information.

After having introduced derivation-constrained access control informally, we incorpo-
rate it into our formal model in the next section.

4.4 Formal Model

In this section, we introduce a notation for defining derivation-constrained access rights
and derivation properties and discuss their application in access control.

As explained in Section 2.6.2, Abadi et al. [1] introduce the constructD controls t to
encode that principalD is on a service’s ACL for resourcet. The construct is defined as

D controls t ≡ ((D says t) ⊃ t).

For our purposes, this definition is not sufficient. It is important to guarantee freshness
of a request in order to avoid replay attacks, as stated in Section 4.3.3. Strictly speaking,
freshness demands that a request is new. We relax this requirement and demand only
that a request is recent. As it turns out, our formal model easily supports this relaxed
requirement, and, as we explain in Section 4.7, the original requirement is difficult to
achieve in our problem setting.

To formalize freshness, we observe that Lampson et al. [81] suggest a statement form
t until T to denote the lifetimeT of statementt. We consider a statement fresh if its
lifetime has not expired and extend Abadi et al.’s definition of access control to support
freshness of a request: (Tnow is the current time.)

87

D controls t ≡ ((D says t) until T) ⊃ t if T ≤ Tnow. (4.1)

We are now ready to formalize derivation-constrained access control, as discussed in
Section 4.3, by extending the definition ofD controls t .

We first introduce the convention to mark information in derivation-constrained access
rights with the + sign (e.g.,A says (B

D.x+

=====⇒ A). In this way, when a service detects
marked information in a speaks-for statement, it concludes that this statement should be
used only for derivation-constrained access control, not for conventional access control.

Intuitively, having an access right to informationD.x should imply having an access
right to informationD.x+. In terms of information relationships, we can formulate this
requirement asD.x −→ D.x+. This relationship allows us to combine speaks-for state-

ments forD.x andD.x+ based on Axiom (3.3), or̀ (C
D.x+

=====⇒ B) ∧ (B
D.x

====⇒ A) ⊃
(C

D.x+

=====⇒ A).

We also introduce a notation for expressing derivation properties. The statement

E.y 7→ D.x (4.2)

denotes that subject informationE.y can be derived from issuer informationD.x. For ex-
ample,D.x could be the location information of Alice’s laptop, as owned by her company,
andE.y could be Alice’s location information, as owned by Alice.

As explained in Section 4.3.2, we assume that for a derivation property to hold, the
principal owning the issuer information or a principal speaking for that principal needs to
issue the statement, that is,

` (F says (E.y 7→ D.x)) ∧ (F
D.x

====⇒ D) ⊃ (E.y 7→ D.x). (4.3)

We can now formulate derivation-constrained access control. In particular, we have a
service use a different definition forD controls t if t involves information marked with
the + sign. Formally,

88

D controls “readD.x+” (4.4)

≡ ((D says “readD.x+”) until T1

∧ E.y 7→ D.x

∧ (E says “readE.y”) until T2)

⊃ “readD.x+” if T1 ≤ Tnow andT2 ≤ Tnow.

The first condition is straightforward: There must be a fresh and authorized request,
“readD.x+”. In the second condition, we require that there is informationE.y that can
be derived fromD.x.1 The third condition calls for a fresh and authorized request for the
derived information,E.y.

Note that the third condition can be replaced by a condition requiring a request for
E.y+ and conditions requiring the existence of another derivation property and of another
request. This property makes deployment of our mechanism feasible in scenarios where a
client’s request for information is dealt with by multiple, cascaded gateways between the
client and the endpoint.

Derivation-constrained access control makes proofs of access more complex. It is no
longer sufficient for a gateway to prove that it can speak for the owner of the requested
information regarding this information, as outlined in Section 2.6.2. Instead, Defini-
tion (4.4) requires separate speaks-for relationships for the first and third condition and
a valid derivation property. The two speaks-for relationships demonstrate that the gateway
can speak for the issuer information and the subject information in the derivation property,
respectively. We demonstrate such a proof of access in the next section.

4.5 Examples

In this section, we demonstrate the application of derivation-constrained access control in
two example scenarios.

4.5.1 People Location

We present an example of a derivation gateway. In our scenario, a people-location service
(PL) derives Alice’s location information (i.e., Alice.location) from her laptop’s location

1It is possible to associate a lifetime with the property, we leave it away for readability reasons.

89

Table 4.1: Statements in the people-location scenario. (S1)-(S4) are established during
setup, (S5)-(S16) for access control.

Step Statements

(S1) (Alice says Bob Alice.location
===========⇒ Alice) until T1

(S2) (ACME says PL
(ACME, Alice laptop).location+

========================⇒ ACME) until T2

(S3) ACME says Alice.location 7→ (ACME, Alice laptop).location
(S4) ACME controls (ACME, Alice laptop).location+

(S5) Bobsays “read Alice.location”

(S6) (Bob Alice.location
===========⇒ Alice) until T1

(S7) (Bobsays PL|Bob Alice.location
===========⇒ Bob) until T3

(S8) (PL
(ACME, Alice laptop).location+

========================⇒ ACME) until T2

(S9) PL says ”read (ACME, Alice laptop).location+”
(S10) (ACME says ”read (ACME, Alice laptop).location+”) until T2

(S11) Alice.location 7→ (ACME, Alice laptop).location

(S12) (PL|Bob Alice.location
===========⇒ Bob) until T3

(S13) (PL|Bob Alice.location
===========⇒ Alice) until T3

(S14) PL|Bobsays ”read Alice.location”
(S15) Alice says ”read Alice.location”until T3

(S16) “read (ACME, Alice laptop).location+”

information (i.e., (ACME, Alicelaptop).location), where the laptop is owned by Alice’s
company, ACME, and its location information is offered by a laptop-location service. Note
that the two types of information are owned by two different entities. We show the relevant
statements in Table 4.1.

We start with statements that individuals make before an actual request is issued. Alice
grants Bob access to her location information (S1) and gives the corresponding statement
to Bob. We expect this statement to be long lived. ACME grants the people-location
service access to Alice’s laptop’s location information in a derivation-constrained access
right (S2), again in a long-lived statement, and gives the statement to the service. ACME
also states that the laptop’s location information can be used for deriving Alice’s location
information (S3) and hands over the statement to the people-location service. Finally, the
device location service has ACME on its ACL for the laptop’s location information (S4).

Bob sends a request for Alice’s location information to the people-location service (S5).

90

His proof of access includes a speaks-for statement (S6) derived from the access right that
Bob received from Alice (S1). Bob also issues a short-lived access right for Alice’s lo-
cation information to the people-location service (S7) and sends this access right to the
people-location service. In order to use this access right, the people-location service must
quote Bob (denoted by “|”). As observed by Howell and Kotz [69], this quoting prevents a
gateway from having to make an access decision itself and allows an endpoint to perform
end-to-end access control instead. In particular, quoting makes it possible for an endpoint
to identify the client making the original request to the gateway.

The people-location service now assembles a proof of access that lets it access infor-
mation (ACME, Alice laptop).location+. In particular, the proof needs to show that each
of the conditions in Definition (4.4) is fulfilled.

For the first condition, based on its access right (S2), the service proves that it speaks
for ACME on behalf of Alice’s laptop (S8). Therefore, ACME supports the request of the
people-location service (S9) for the laptop’s location information (S10).

For the second condition, the people-location service validates the derivation prop-
erty (S3) using Axiom (4.3) and proves its validity (S11).

For the third condition, the people-location service derives a speaks-for statement (S12)
from the access right received from Bob (S7). In addition, the service exploits the proof
of access received from Bob showing that Bob can speak for Alice regarding her loca-
tion information (S6). In summary, the people-location service (quoting Bob) can speak
for Alice regarding her location information (S13). Therefore, when the service issues a
(quoted) request for Alice’s location (S14), Alice supports this request (S15). (We assume
thatT3 << T1 since Statement (S1) is long lived, whereas Statement (S7) is short-lived.)

The people-location service then sends statements (S8), (S11), and (S13), together with
requests (S9) and (S14), to the device location service, which validates the statements
and combines them with the requests and the service’s ACL based on Definition (4.4)
to conclude that the people-location service should be granted access (S16) (assuming
T2 ≤ Tnow andT3 ≤ Tnow).

4.5.2 Health Information

Let us look at the application of derivation-constrained access control to delegation gate-
ways, where a client also has access rights to the information offered by an endpoint.
To support delegation gateways, a client can delegate its access rights to the informa-
tion provided by an endpoint to a gateway, potentially in a short-lived way. In related
work [53, 78, 81, 97, 115], a client delegates all its access rights to information offered

91

by the endpoint to the gateway. Derivation-constrained access control supports more fine-
grained delegation.

Let us study the example of deriving a person’s health status from her medical infor-
mation. For example, there is a derivation property

Alice says Alice.healthstatus7→ Alice.heartrate,

which a gateway uses to access information Alice.heartrate at a service. In order to be
granted access, the gateway requires (long-lived) derivation-constrained access to infor-
mation Alice.heartrate and (short-lived) access to information Alice.healthstatus. Alice
has to delegate only these two access rights to the gateway, and only one of them for each
request. Other access rights that Alice might have will not be delegated to the gateway.

4.6 Security Analysis

In this section, we analyze the security of derivation-constrained access control.

Since our formal model is based on Lampson et al.’s model, we inherit its proper-
ties. For example, the model does not prevent a principal having an access right from
forwarding this access right to other principals. The reasoning is that if the model did not
allow this forwarding, the principal could become a proxy for the other principals and ac-
cess information on their behalf. For derivation-constrained access control, this principle
implies that an intruder breaking into a gateway can forward the gateway’s (derivation-
constrained) access rights to other, potentially corrupted gateways. While this attack will
not grant the first gateway access to additional information, the other gateways could ex-
ploit the forwarded access rights if there was an authorized request from a client to them.

As mentioned in Section 4.3, we keep access rights and derivation properties sepa-
rate. A disadvantage of this approach is that intruders into a gateway get more flexibility.
Assume that there are multiple derivation properties, all of them having the same issuer
information. For example, multiple kinds of information can be derived from Alice’s
calendar. Alice grants derivation-constrained access rights to a gateway because Alice ex-
pects the gateway to provide one particular derivation. (For example, Alice expects the
gateway to provide location information.) If an authorized client now asks the gateway for
subject information listed in any of the derivation properties, the gateway will be granted
access, even though Alice does not expect the gateway to perform the derivation listed in
the derivation property exploited by the gateway. Therefore, an intruder into a gateway

92

can increase its chances of success by trying to trick authorized clients into contacting the
corrupted gateway for any of the different types of subject information. We can look at
this problem as an instance of the confused-deputy problem [58].

We can address this attack in different ways. At a low level, clients must use authen-
tication to ensure that they really talk to the gateway owning a particular public key. At a
high level, clients need to ensure that they obtain a gateway’s genuine public key (or more
general, genuine contact information) and not a fake key (fake contact information) pro-
duced by a malicious entity. For example, Alice could tell Bob which gateway he should
use for obtaining her location information. At the formal level, we could address this attack

by combining access rights and derivation properties. For example,B
{“E.y 7→D.x”}

===========⇒ A
could be used to indicate thatB can speak forA regarding “readD.x”, but only if there
is an authorized request for “readE.y”. In this scenario, ifB issues a request forD.x,
but presents a request for derived information other thanE.y, the request will be denied.
However, this approach could require more access rights. Namely, if a gateway extracted
multiple information items from the issuer information, it will need separate access rights
for each information item. When derivation properties are separate, the service requires
only one access right.

Derivation-constrained access control also fails when an owner of information issues
a derivation property that has information owned by a corrupted gateway as subject in-
formation. In this scenario, the intruder into the gateway can grant itself access rights to
this information and then issue a request for the subject information to the gateway. Since
the gateway owns the subject information, a service will honor the gateway’s requests for
the issuer information listed in the derivation property (assuming that the gateway has
constrained access to this issuer information). Therefore, owners of information need to
exercise care when deciding what representation scheme for information they use upon
issuing derivation properties.

When granting a service that derives information access to input information, the
owner of this input information needs to choose between issuing an unconstrained and a
derivation-constrained access right. Whenever possible, the owner should define derivation-
constrained access rights since they make the service less susceptible in case of an intru-
sion. However, a derivation-constrained access right is not always sufficient. For example,
a tracking service by design has to contact a location service continuously, even when
there is no authorized request that is sent by a client to the tracking service. For such a
service, the owner of the location information needs to issue an unconstrained access right.
In this case, it might be possible to use other techniques to shield the input information
from an intruder. For example, a service could compute on encrypted input information
(see Section 4.9).

93

(derivation
(version ‘‘1’’)
(issuer

(information (pub key:acme) alice laptop location))
(subject

(information (pub key:alice) alice location)))

(cert
(version ‘‘1’’)
(issuer (pub key:acme))
(subject (pub key:people locator))
(conditional)
(permission

(information (pub key:acme) alice laptop location))
(tag *))

Figure 4.2: Derivation property and derivation-constrained access right. Alice’s location
information is derived from her laptop’s location information. ACME grants the people-
location service derivation-constrained access to the laptop’s location information. (The
digital signatures are omitted.)

4.7 Implementation

Our implementation is based on the client-based access-control framework introduced in
Section 2.6, to which we added support for building proofs of access involving derivation-
constrained access control, as outlined in Sections 4.4 and 4.5.

We use extended SPKI/SDSI certificates for expressing and storing derivation proper-
ties and derivation-constrained access rights. We give two examples in Figure 4.2. The first
certificate states that Alice’s location information, as owned by Alice, is derived from her
laptop’s location information, as owned by ACME. The second certificate says that ACME
grants the people-location service an access right to the laptop’s location information. We
mark derivation-constrained access rights with aconditional entry.

As shown in Section 4.5.1, a client that issues a request to a gateway also needs to
generate a short-lived access right that grants the gateway access to the information in
the client’s request. One way to express such an access right is to have the client issue
a digital certificate. However, if there are multiple, cascaded gateways, each will have to

94

forward the access right to the next gateway in the chain and each will have to issue a
digital certificate. Generating a certificate is expensive. In our implementation, we reduce
cost by not using separate digital certificates for forwarding access rights to gateways.
Instead, we have the original issuer of a request sign this request, where the lifetime of this
signature is short. Gateways now forward access rights by forwarding this signed request.
In the example described in Section 4.5, instead of issuing a digital certificate that grants
the people-location service short-lived access to Alice’s location information, Bob signs
his request for this information before sending the request to the people-location service.
We assume that any entity that is in the possession of a signed request is implicitly granted
access to the information in the request. Formally, this entity can speak for the issuer of
the signed request on behalf of the information in the request.

To be secure, this optimization requires two precautions: First, we have to ensure
that attackers cannot snoop traffic and obtain access rights by observing signed requests.
Therefore, communication has to be confidential. Confidentiality is required anyway be-
cause we exchange private information (such as a person’s location information). Second,
an endpoint can use a speaks-for statement that is implicitly derived from a signed re-
quest only for running access control for this particular request; it must never re-use such
a speaks-for statement for other requests. The latter precaution is required since gateways
do not make access decisions. Without it, an attacker could contact a gateway that pre-
viously obtained information from a service and have it contact the service again. If the
service re-used the previously derived speaks-for statement, the statement would grant the
gateway access again (unless the statement had expired).

To support theuntil construct, we exploit the fact that the lifetime of SPKI/SDSI cer-
tificates can be limited and have the issuer of a statement assign a lifetime to the statement.
We use lifetimes to achieve freshness. We could also integrate a nonce-based approach,
where the entity that wants to issue a request to a target receives a nonce from the target
and returns this nonce in its request (as deployed by, for example, Bauer et al. [16] and de-
scribed in Section 3.9.1). However, our communication pattern does not allow for nonces.
In particular, a client sends its request to a gateway before the gateway sends a request to
a service and gets the chance to obtain a nonce from the service.

4.8 Performance Analysis

We present a measurement-based analysis of derivation-constrained access control and
discuss the results.

95

Table 4.2: Client-response time. Mean and standard deviation of elapsed time for security-
related operations (in bold) and other expensive operations [ms].

Entity Step µ (σ)
Client Request generation 27 (3)
Client SSL sockets creation 52 (4)
Gateway Access control 2 (1)
Gateway Gather badge information 26 (3)
Gateway Request generation 41 (3)
Gateway SSL sockets creation 52 (5)
Endpoint Access control 3 (2)
Endpoint Gather location information 49 (30)

Total 310 (37)

4.8.1 Measurements

We measure the time it takes for a gateway and an endpoint to process a request, where
processing includes access control. Our scenario roughly corresponds to the example ap-
plication discussed in Section 4.5. We assume that Alice grants Bob access to her lo-
cation information. Bob contacts a service providing people-location information. This
service acts as a gateway and contacts a service that provides location information about
badges worn by people. Alice’s company, as the owner of the badge, specifies a derivation
property between the badge’s location information and Alice’s location information. In
addition, the company issues a derivation-constrained access access right that grants the
people-location service access to the badge’s location information.

Our experiments run on an unloaded Pentium IV/2.5 GHz with 1.5 GB of memory,
Linux 2.4.20, and Java 1.4.2. The public and private key operations operate on RSA keys
with a size of 1024 bit. All experiments are run 100 times.

We run the client, the people-location service, and the badge location service on the
unloaded host. In addition, there is another host that runs a database storing digital cer-
tificates and static information about users and devices (e.g., ownership of devices and
location of sensors detecting badges). The client and the location services contact this
database to retrieve any data required for generating a request for information or process-
ing such a request. Finally, there is a host that runs a commercial, Windows-based software
application for locating RF/IR badges [123].

96

It takes about 310 ms for the client to send a request to the gateway and to receive a
response. We present more detailed results in Table 4.2. The terms “client”, “gateway”,
and “endpoint” represent Bob, the people-location service, and the badge location service,
respectively. The most expensive operations are the two SSL sockets creations, one pair
for the client-gateway connection and another pair for the gateway-endpoint connection.
For opening an SSL connection, the two peers need to authenticate each other. Each
authentication requires an RSA signing or decryption operation operation, which takes
about 17 ms. RSA is also responsible for most of the cost of generating a request, because
a request needs to be signed. In our current implementation, any entity issuing a request
needs to sign the request. This approach supports scenarios, where there are multiple,
cascaded gateways. If an entity knew that it is directly contacting an endpoint, it could omit
this signature. For example, the people-location service would not have to sign the request
for the badge’s location information sent to the badge location service, since this service is
an endpoint. However, Bob needs to sign his request for Alice’s location information sent
to the people-location service.

Compared to the cost for creating SSL sockets and generating a request, access control
is inexpensive. The main cost is caused by signature verification, which takes about 1 ms
per signature. The gateway validates the signatures of the client’s request and of the access
right granting access to the client. Strictly speaking, derivation-constrained access control
does not require a gateway to make an access decision. However, we have the gateway
make such decisions, since the decisions are cheap and can help against denial-of-service
attacks, where clients send unauthorized requests to a gateway. The endpoint needs to
make access decisions. It validates the signatures of the client’s request, of the access right
granting access to the client, of the access right granting derivation-constrained access to
the gateway, and of the derivation property. Overall, it has to validate four signatures.

The two most expensive operations not related to access control are the gathering of
badge information, as performed by the gateway, and the gathering of location informa-
tion, as performed by the endpoint. For the former operation, the gateway contacts the
external database in order to learn about Alice’s badge. For the latter operation, the end-
point contacts the external host for retrieving the badge’s location.

SSL allows two communicating entities to resume previous sessions. This feature
avoids the two expensive RSA signing/decryption operations required for setting up a
fresh SSL session. With session resume, we can reduce the cost of setting up an SSL
socket to 10 ms (standard deviation: 3 ms) and the overall mean response time by 28% to
224 ms (48 ms). Session resume assumes that the same pair of entities communicate re-
peatedly in a time frame. Its usefulness strongly depends on the deployment environment.
For example, the people-location service will contact the badge location service multiple

97

times (though not necessarily for the same device). A tracking application will contact the
people-location service often, whereas a human might contact it only occasionally.

Finally, we note that the RSA operations are CPU-bound and benefit strongly from
faster hardware and implementation optimizations. For example, on our evaluation ma-
chine, OpenSSL [105] completes an RSA signing operation (1024 bits) in 5 ms. A verifi-
cation operation takes 0.3 ms.

4.8.2 Discussion

We now compare the cost of running derivation-constrained access control with the ex-
pected cost of alternative approaches. For delegation gateways, an alternative approach is
to have a client delegate its access rights to the gateway in a short-lived way. The end-
point then needs to validate two digital signatures, one for the client’s access right and
one for the gateway’s access right. In our approach, four signatures have to be checked.
However, validating signatures is relatively cheap, and our approach supports fine-grained
delegation.

For derivation gateways, an alternative approach is to have the owner of the information
provided by the endpoint issue a long-lived access right to a gateway. This approach is
less expensive than our approach. There is no need for the client to sign its request to
the gateway (i.e., issue a short-lived access right to the gateway) and for the endpoint
to validate this access right, the access right of the client, and the derivation property.
However, long-lived access rights make the gateway vulnerable in case of an intrusion. In
addition, derivation-constrained access control does not require a gateway to run access
control, whereas the alternative approach does.

4.9 Related Work

There are several areas of research that are relevant to our work. In particular, there is
related research about access control for delegation gateways, derivation of access rights,
and computation on encrypted data.

We first review some related work dealing with protocol gateways. We have discussed
the limitations of these schemes in Section 4.2. Sollins’ solution [115] relies on “pass-
ports”. In a passport, an entity states that some other entity can act on its behalf. A client
generates a passport stating that the first gateway can act on her behalf. The client may also
add constraints that limit the way the gateway can act to the passport. The gateway takes

98

the passport, adds any further constraints, signs it, and hands it off to the next gateway.
This process is repeated until the passport arrives at the service, which verifies the pass-
port. In Neuman’s proxy-based authorization [97], entities hand out proxies (i.e., signed
tokens) to other entities to grant them (potentially limited) access rights. Proxies can be
used to implement Sollins’ cascaded authentication. Gasser and McDermott [53] have a
client issue a delegation certificate to a local workstation allowing the workstation to act
on the client’s behalf. The local workstation might issue another certificate to the next
workstation. The delegation certificates expire in order to limit the period during which
corrupt systems can operate on the client’s behalf. There are also ”delegation keys” that
prevent a workstation from affecting clients upon a compromise taking place between the
ending of a client session and the expiration of a delegation certificate. A workstation
erases its received key when a session ends. Lampson et al. [81] also exploit delegation to
grant access rights to gateways. They achieve delegation by modifying a service’s access
control list of the object to which access should be delegated. In addition, both a client
and a gateway need to make a statement that lets the service conclude that the gateway is
delegated an access right by the client. To cope with intruders, the authors suggest the use
of expiring keys. Howell and Kotz [69] suggest the usage of “quoting protocol gateways”
to prevent a gateway from making access decisions. Namely, principals do not delegate
authority to the gateway, instead they delegate authority to the gateway quoting a partic-
ular client. Upon a request, the gateway needs to quote the identity of the client to the
service, and the service uses this quoting information in its access control. Kornievskaia et
al. [78] study the implementation of a protocol gateway that lets clients access Kerberized
services using an SSL-enabled Web browser.

Bertino et al. [18] present a temporal authorization model, in which an access right be-
comes valid whenever an access right that it depends on becomes valid. In our scenario, the
former access right could be a gateway’s access right to information offered by a service
and the latter one a client’s access right to information provided by the gateway. How-
ever, the presented model applies only to a centralized environment, in which there is an
administrator that manages both access rights and dependencies between access rights. In
pervasive computing, individuals issue access rights and establish derivation relationships.

In derivation-constrained access control, an intruder into a gateway gets to see any
information given to the gateway when a service answers an authorized request from the
gateway. We could avoid this information leak by having the service encrypt information
such that only the client can decrypt it and by having the gateway compute on the encrypted
information. This approach will obviously work if the gateway does not need to perform
any computations on the information (e.g., in the people-location scenario). The approach
is also applicable to some very specific scenarios, where the gateway does have to run

99

some computations on the encrypted information. For example, Song et al. [116] discuss
searching on encrypted data and Kissner and Song [77] show how to perform set operations
on encrypted data. However, it is unclear how practical this approach is in general.

4.10 Summary

We introduced the concept of derivation-constrained access control, which allows one
to limit the capabilities of an intruder into a gateway. We presented a formal model
for expressing derivation-constrained access rights to information and derivation prop-
erties between information, and we proposed a mechanism for exploiting both of them
in derivation-constrained access control. The sample implementation and its deployment
demonstrate the feasibility of our design. The performance of access control is compet-
itive. A large fraction of the cost is caused by expensive, but required operations for
authenticating peers.

Derivation-constrained access control is applicable to gateways that query for input
information only when receiving an authorized query for output information. However, the
concept is not applicable to gateways that need to continuously ask for input information,
even when there is no query for output information. For this class of gateways, an intruder
will still be able to issue authorized queries for input information.

In the next chapter, we examine how we can support context-sensitive constraints on
access rights, without leaking information if these constraints involve confidential infor-
mation.

100

Chapter 5

Confidential Context-Sensitive
Constraints

Access control ensures that only principals that have an access right to confidential in-
formation can access this information. Access rights can be constrained, that is, they are
valid only if certain conditions are met. For example, an access right can state that access
is granted only during office hours. Pervasive computing makes it possible to constrain
access rights based on a person’s context information. For example, an access right can
declare that access should be granted to an individual only if the individual is at a particu-
lar location. However, context-sensitive constraints can lead to information leaks. In this
chapter, we study information leaks that context-sensitive constraints can cause and how
to avoid these leaks.

5.1 Overview

Let us look at three examples to illustrate information leaks caused by context-sensitive
constraints. In our first example, information leaks to a service. Assume that Carol lets
people standing in front of her office see her current calendar entry; a cellphone service
provides people’s location information, and a centralized calendar system offers Carol’s
calendar information. Given this setup, when Alice asks the calendar service for Carol’s
calendar entry, the calendar service could learn Alice’s location while running access con-
trol, either by querying the location service directly or by being told that the constraint in
Carol’s access right is fulfilled. Therefore, Alice’s location information could leak to the
calendar service (i.e., to the organization running this service).

101

In the second example, information leaks to a person who asks for information. As-
sume that Carol allows people to access her calendar entry if she is in her office. Therefore,
if somebody can retrieve this entry, he will also learn that Carol is in her office. A person
planning on breaking into Carol’s house would happily take advantage of this information
leak.

In our third example, information leaks to a person who hands out access rights. As-
sume that Carol grants herself an access right to her calendar entry under the condition
that Alice is at a particular location. When the calendar system grants Carol access to her
entry, she will learn Alice’s location, which could be an information leak.

Related work has largely ignored information leaks caused by context-sensitive con-
straints on access rights to information. In this chapter, we examine how constraints on
access rights can cause information leaks and how to avoid these leaks. In particular, our
contributions include

• a systematic investigation of different access-control approaches for information
leaks caused by constraints,

• the organization of access rights and of constraints on them in a directed graph,
which simplifies the detection of conflicting constraints and of information leaks
and the resolution of constraints,

• the concept of hidden constraints, which makes it possible to keep constraints secret
and thus reduces the danger of information leaks, and

• a formal model that supports constraints on access rights in distributed access con-
trol, a prototype implementation based on this model, and an evaluation of this im-
plementation.

We start by listing the system model (Section 5.2) and by extending our formal model
to support constrained access rights (Section 5.3). We then focus on a restricted set of
constraints and discuss information leaks that these constraints could cause in different
access-control approaches and how to avoid these leaks (Section 5.4). Based on this dis-
cussion, we drop the restrictions on constraints and introduce a graphical representation of
access rights and of constraints on them and show how to exploit this graph for preventing
information leaks (Section 5.5). We then examine how keeping constraints secret can also
avoid information leaks (Section 5.6). Furthermore, we discuss interactions between infor-
mation relationships and constraints (Section 5.7). Next, we present a constraint-aware,
client-based access-control architecture (Section 5.8). Finally, we measure the perfor-
mance of this architecture and discuss optimizations (Section 5.9).

102

5.2 System Model

In this section, we present the system model that we use for studying information leaks
caused by context-sensitive constraints. In particular, we discuss the nature of constraints,
the studied scenario, enforceability issues, and staleness of information used for constrain-
ing access.

5.2.1 Nature of Constraints

We assume that a constraint consists of information and of a set of permitted values for this
information. The constraint is satisfied if the current value of its information equals one of
the values in the set. A tuple of constraints attached to an access right is satisfied if each
constraint in the tuple is satisfied. We observe that many sensible constraints in pervasive
computing involve information about the context of a person. A person’s context can in-
clude the current time, her current activity, or her current location. In addition, a constraint
is typically either about the person that asks for information (e.g., “Carol grants Alice ac-
cess to Carol’s calendar if Alice is in Alice’s office.”) or about the person that grants an
access right (e.g., “Carol grants Alice access to Carol’s calendar if Carol is in Carol’s of-
fice.”), but not about third entities. Therefore, in this chapter, we are mainly interested in
constraints that deal with context-sensitive information about the first two entities (though
our presented solution is powerful enough to support constraints involving third entities).
We focus on context-sensitive constraints that are confidential (e.g., a person’s location or
activity, but not the current time) and that have dynamic values, which makes it infeasible
to check the satisfaction of a constraint upon the specification of an access right.

5.2.2 Scenario

In this chapter, we examine the following scenario: a client wants to retrieve information
provided by a particular service, and this retrieval requires the retrieval of information
from other services to ensure the satisfaction of constraints. We call the first type of in-
formationprimary information; it is provided by theprimary service. The second type of
information isconstraint information; it is provided byconstraint services. Let us look at
an example. Alice wants to access Carol’s calendar entry. Her access right to this infor-
mation is constrained to Alice being in her office. Carol’s calendar and Alice’s location
information are offered by a calendar and a location service, respectively. Here, Carol’s
calendar entry corresponds to the primary information and Alice’s location to constraint

103

information. The calendar service is the primary service and the location service is a con-
straint service. Note that for different requests, the same information can be either primary
or constraint information, and a service can be either the primary or a constraint service.

Multiple services can provide the same type of information. For example, there are
multiple ways to locate a person. For simplicity reasons, we assume that there is only one
service that offers the primary information in our problem setting. Extending our algo-
rithms to support multiple such services is straightforward. However, picking a constraint
service requires some thought. We could let the owner of constraint information choose a
service. However, a malicious owner can pick a service that always guarantees satisfaction
of a constraint. In the calendar example above, Alice, as the owner of her location infor-
mation, could designate a fake location service that always returns Alice’s office as her
location. Instead, it is the issuer (Carol in our example) of a constrained access right who
should pick the constraint service(s) providing the constraint information in the access
right.

5.2.3 Enforceability

To avoid an information leak, the client should be able to gather confidential knowledge
about constraint information, such as its current value, only if the client had an access
right to this constraint information. However, it is not always possible to enforce this
requirement. For example, if the client had an access right to information constrained to
particular values of this information (e.g., “Carol grants Alice access to Carol’s location if
Carol is in her office.”) and if the client was denied access to the information, the client
could infer a set of possible current values for the information, where this set is disjunct
from the set of values that the client is permitted to learn. In the worst case, where the
client is permitted to access all but one of the information’s possible values, a denied
request leaks the current value of the primary information to the client. We can generalize
this case to the case where multiple access rights depend on each other. For instance,
assume that there are two possible values for both Alice’s location information and her
activity information. Alice grants Bob access to her location information constrained to
a particular value of her activity information. She also grants him access to her activity
information constrained to a particular value of her location information. If Bob issues a
query for Alice’s location and is denied access, the probability that Alice is performing the
activity not listed in Bob’s access right to the location information will be twice as high as
the probability that she is performing the listed activity. (It is possible for such a loop to
involve more than two access rights.) In this chapter, we want to avoid information leaks
for the enforceable cases, that is, cases where the information that an access right grants

104

access to is different from the constraint information in the access right and where access
rights do not depend on each other.

5.2.4 Staleness of Constraint Information

To ensure satisfaction of constraints, the access-control algorithm could retrieve the current
value of constraint information from a constraint service, validate that the corresponding
constraint is satisfied, get the primary information from the primary service, and return
this information to the client. However, if primary and constraint information are offered
by different services, this algorithm will not guarantee that the constraint is still satisfied at
the exact time when the primary information is accessed. Namely, the retrieved constraint
information could have become stale in the meantime.

We can avoid this problem by choosing a timestamp and assigning this timestamp to
all queries sent to the (time-synchronized) constraint and primary services. Here, a service
no longer returns the current value of its offered information. Instead, it returns the value
of the information at the time indicated by the timestamp. A timestamp can correspond
either to a time in the past or to a time in the future.

For times in the past, a service now needs to keep state and remember past values of
the information that it offers. For some services, this requirement is difficult to implement.
For example, a location service could periodically poll the location of all the locatable
individuals. However, the polled values do not necessarily let the service correctly deduce
the location of an individual for a random timestamp in the past. We could restrict the
granularity of the permitted timestamps and make a timestamp correspond to a time when
polling occurs. However, if the polling frequency is low, clients will potentially be given
old information. If the polling interval is high, the overhead caused by the (very often
unnecessary) polling will also be high. Finally, being able to impose the same granularity
on all services seems unrealistic.

Services do not need to keep state when timestamps correspond to a time in the future.
In this approach, a notification step precedes the submission of a query to a service. In the
notification step, the service is notified of the upcoming query. In particular, the notifica-
tion lists a timestamp covering a time in the future. This time corresponds to the time for
which the upcoming query will expect the value of the information provided by the service.
(Obviously, this query should be sent only after the time indicated in the timestamp has
passed.) In the example given above, after receiving a notification containing a timestamp,
the location service polls the location of the queried user (and of no other users) at the
indicated time. Later, when the actual query arrives, the service returns the polled value.

105

The problem with this approach is that interactivity could suffer. The timestamp submitted
in the notification needs to correspond to a time in the future that is far away enough to
guarantee that all the involved services can be contacted beforehand. Depending on the
number of services, this could take hundreds of milliseconds and affect interactivity neg-
atively. Furthermore, the approach makes communication more expensive. Each service
needs to be contacted twice (first for submitting the notification, then for submitting the
actual query). If we used the same connection for both transfers instead, we could tie up
communication resources for a potentially long time.

As outlined above, avoiding staleness of constraint information raises several imple-
mentation challenges. We do not expect staleness of constraint information to become
a severe issue for pervasive computing, as opposed to other environments (e.g., military
or financial services). First, in pervasive computing, constraints involve context-sensitive
information. Typically, this information changes little between the time that it is retrieved
and the time that the information requested by a client is accessed. For example, since
individuals move at a finite speed, the change in an individual’s location between retriev-
ing her location from a constraint service and accessing the primary service is limited.
To prevent attackers from artificially prolonging this period, a service offering context-
sensitive information should indicate for how long the service expects the information to
keep its current value. The access-control algorithm should return primary information
to the client only within the indicated time frame. Second, we can look at staleness as
another factor that contributes to the uncertainty about the current value of information
used in a constraint. In pervasive computing, there typically already is some uncertainty
about context-sensitive information (e.g., location information can be wrong or conflict-
ing), and access control needs to be able to deal with this uncertainty. We do not address
the incorporation of uncertainty into access control in this thesis.

In our implementation, we do not use timestamps and have constraint services indicate
for how long they expect constraint information to keep its current value.

5.3 Formal Model

In this section, we extend our formal modal to support constraints on access rights. Our
extensions will make clear what statements an entity needs to issue and will serve as a
guide for the design of a distributed access-control architecture that supports constraints
(Section 5.8).

We have the following statement denote that principalA grants principalB access to
informationC.x (assuming thatA itself has access), given that constraint informationD.y

106

has a current value in setV, whereA decides about the constraint service that provides
D.y:

A says ((A says D.y ∈ V) ⊃ (B
C.x

====⇒ A)). (5.1)

It is possible forA to list multiple constraints. We explicitly includeA as the principal
that is responsible for guaranteeing satisfaction ofD.y ∈ V since different issuers might
want to use different constraint services for providing the same constraint information.
Instead of listing its own identity as the principal responsible for guaranteeing satisfac-
tion of the constraint,A could directly give the identity of the constraint service in the
statement. However, we prefer to keep the mapping separate from the access right so that
access rights do not have to be re-issued when the mapping changes.

For establishing a mapping, principalA states that a constraint service,S, can certify
on its behalf thatD.y has a value in setV, or

A says S
{“D.y∈V”}

=========⇒ A.

For short,

A says S
D.y∈V

======⇒ A. (5.2)

The mapping above depends on the set of valuesV. Therefore, principalA would have
to issue separate mappings for each set and each type of constraint information thatA lists
in an access right. However, we want to giveA the option to define a single mapping for a
particular type of constraint information, which can be used for all possible sets of values
for this information. To achieve this property, we introduce an axiom stating that ifS can
certify membership in a set of values,S can also certify membership in subsets of this set,
or

` (E says S
D.y∈V

======⇒ A) ⊃ (E says S
D.y∈V ′

======⇒ A) with V ′ ⊂ V. (5.3)

PrincipalA can now issue

107

A says S
D.y∈W

=======⇒ A, (5.4)

whereW corresponds to the range ofD.y, that is,W lists all possible values ofD.y. Using
Axiom (5.3), we can derive the mapping for any setV listed in an access right containing
constraint informationD.y and issued byA.

Another useful axiom involves services that are not aware that they are used for guar-
anteeing satisfaction of a constraint. For example, serviceS might just return the current
value ofD.y (e.g.,D.y = v) instead of acknowledging that this current value is in a par-
ticular set (e.g.,D.y ∈ V). To be able to exploit such a service, we introduce an axiom that
states

` (S says D.y = v) ⊃ (S says D.y ∈ V) with v ∈ V . (5.5)

Let us now illustrate how access control uses the additional axioms by walking through
an example scenario in the context of client-based access control.

PrincipalA defines the access right and the mapping from constraint information to
a constraint service given in Statements (5.1) and (5.4), respectively. ClientB wants
to access informationC.x. The principal contacts constraint serviceS and retrieves the
current value of constraint informationD.y, that is,

S says D.y = v. (5.6)

For example,S issues a digital certificate expressing this statement.

PrincipalB then exploits this statement in its proof of access for informationC.x. In
particular, with the help of Axiom (5.5), we can derive

S says D.y ∈ V . (5.7)

Furthermore, using Axiom (5.3) and the mapping of constraint informationD.y to
constraint service S in Statement (5.4), we conclude that this mapping also applies to the
set of values given in access right (5.1), that is, we derive Statement (5.2).

108

We can derive a speaks-for relationship regarding the statementD.y ∈ V from State-
ment (5.2). Based on this relationship and Statement (5.7), we conclude

A says D.y ∈ V . (5.8)

Using the constrained access right (Statement (5.1)) and Statement (5.8) guaranteeing
satisfaction of the constraint, we can use modus ponens forsays1 to derive

A says B
C.x

====⇒ A,

from which we can infer speaks-for relationship

B
C.x

====⇒ A.

PrincipalB can use this relationship in its proof of access, as explained in Sections 2.5.2
and 2.6.2.

For access rights where the primary information is identical to constraint information,
the client will not be able to resolve the corresponding constraint before sending its proof
of access to the primary service. Here, the client will insert a dummy statement show-
ing constraint satisfaction into the proof. The primary service will replace this dummy
statement with a valid statement, if possible.

5.4 Constraints and Information Leaks

Information leaks due to constrained access rights occur when a single entity or multiple,
collaborating entities that are familiar with a constraint specification in an access right and
that are able to observe requests exploiting this access right can infer confidential knowl-
edge about the constraint information listed in the specification that the single entity and
all of the collaborating entities, respectively, are not authorized to access. (If any of the
collaborating entities is authorized, this knowledge does not result in an information leak,
since the authorized entity could always proxy for the unauthorized entities.) In particular,

1` (A says s ∧A says (s ⊃ s′)) ⊃ (A says s′) [81].

109

the leaked knowledge reveals that the current value of the constraint information is in the
set of values listed in the constraint specification or that the current value is not in this set.
In inference-control research [46], these two cases are calledpositiveandnegative com-
promises[32], respectively. We assume that the range of values that constraint information
can have is publicly known. Therefore, both for positive and negative compromises, a set
of possible current values leaks. If this set contains only one element, the current value
leaks, and there is anexact compromise[3]. If this set contains more than one element,
there is still apartial compromise[3], since the set is smaller than the range of values that
the constraint information can have.

There are multiple approaches to deploy access control in a distributed environment.
In this section, we investigate how information leaks, as defined above, can occur in three
different approaches, and we present access-control algorithms to avoid these leaks.

We concentrate on the simple case where the client’s access right to the primary in-
formation has a set of constraints attached to it (e.g., “Carol grants Alice access to her
calendar entry if Carol is in her office.”) and where the client’s access rights to constraint
information are unconstrained (e.g., “Carol grants Alice unconstrained access to her loca-
tion information.”). We discuss the more general case in Section 5.5.

In this section, whenever we state that an entity has an access right to information, we
have this statement cover both the case where access is granted based only on an initial
access right and the case where access is granted based on an initial access right and some
forwarded access rights.

5.4.1 Centralized Access Control

In centralized access control, the client sends its request for the primary information to a
centralized entity, which runs access control on behalf of individual services. If there is
an access right that grants access to the client, the centralized entity will ensure that all
the constraints in the access right are satisfied. (We assume that access rights are stored
with the centralized entity.) Therefore, the centralized entity has to retrieve the current
values of the constraint information from the corresponding constraint services. If all the
constraints are satisfied, the centralized entity will retrieve the primary information from
the primary service and return the information to the client.

For information leaks, as defined above, to occur, an entity needs to know the constraint
specifications in an access right. In centralized access control, we assume that, in practice,
the client being granted a (constrained) access right has this knowledge. In addition, the
issuer of the access right obviously also has this knowledge. (So does the centralized

110

entity, but it has access to any information, and information cannot leak to it.) Therefore,
we have to prevent confidential knowledge about constraint information from leaking to
the client and to the issuer of an access right.

The client could derive this confidential knowledge by observing whether its request
for the primary information is granted or denied access. In the first case, the client will
learn that all the constraints in the client’s access right are satisfied. Therefore, for each
constraint, the client will be able to infer at least a set of possible current values. In the
second case, the client will learn at least that one of the constraints in the client’s access
right is not satisfied and at most the current value of the (single) constraint in the access
right. In both cases, there could be an information leak. To avoid this leak, the centralized
entity needs to ensure that the client has access to the constraint information listed in the
access right. In more detail, the centralized entity implements the following steps:

1. Deny access if there is no access right that grants the client access to the primary
information.

2. For each constraint in this access right,

(a) deny access if there is no access right that grants the client access to the con-
straint information listed in the constraint, and

(b) retrieve the current value of the constraint information from the corresponding
constraint service and deny access if this value is not in the set of permitted
values listed in the constraint specification.

3. Retrieve the current value of the primary information from the primary service. Re-
turn the value to the client if the client’s access right does not restrict the permitted
values or if one of the permitted values equals the current value, else deny access.

In this algorithm, step 2 will deny access to the client if the client does not have access
to constraint information, and the client cannot infer any confidential knowledge about the
constraint information from the denial.

Let us now discuss how an issuer of an access right can gather confidential knowledge
about constraint information in the access right. The issuer of the client’s access right
to the primary information can collude with the primary service (i.e., its administrator).
Whenever this service is contacted by the centralized entity, the constraints in the client’s
access right must be satisfied, and the issuer and the primary service could infer confi-
dential knowledge about constraint information. Therefore, based on our definition of an
information leak, it seems sufficient to have the centralized entity ensure that either the

111

Alice
Carol.calendar

Alice.location?

Location
Service

Alice.location

Calendar
Service

Entity

Centralized

Carol.calendar

Bob.activity

Bob.activity?

Activity
Service

Alice.location?
Bob.activity?

Figure 5.1: Information leak to issuer of access right. The scenario illustrates Bob’s ac-
tivity information leaking to Alice. Arrows indicate queries for information. The first line
associated with an arrow gives the queried information. The second (and third) line lists
the information that the queried service (or Alice) needs to have access to. This require-
ment needs to be verified by the centralized entity before the entity sends a query to a
service (or answers Alice’s request.)

issuer or the primary service has access to the constraint information in the client’s access
right before retrieving the primary information from the primary service.

However, the second option does not entirely prevent confidential knowledge about
constraint information from leaking to the issuer of an access right. Figure 5.1 illustrates
such a scenario. Assume that Carol grants Alice access to her calendar if Alice is in
Alice’s office. As required by the second option, upon Alice issuing a request, the central-
ized entity ensures that the calendar service has access to Alice’s location before retrieving
Carol’s calendar entry from the calendar service. This service has an access right to Al-
ice’s location information issued by Alice constrained to Bob being not busy. Therefore,
the centralized entity must also ensure that the calendar service has access to Bob’s activ-
ity information. Furthermore, before retrieving Alice’s location from the location service,
the centralized entity must ensure that the location service can access Bob’s activity infor-
mation. If Bob grants the calendar and location services access to his activity information,
Alice’s request will eventually be granted access. Then, Alice can conclude that Bob is
not busy, regardless of whether she has an access right to this information. To avoid this
kind of information leaks, the centralized entity must ensure that the issuer of an access
right has access to constraint information in the access right. This condition will prevent

112

Alice from exploiting the access right to the calendar service constrained based on Bob’s
activity for learning this activity information.

In order to validate that the issuer of an access right has access to constraint infor-
mation, the centralized entity employs the same algorithm as the one it uses for ensuring
that the client has access to constraint information given before. Note that the centralized
entity must recursively ensure that the issuer of an access right to the issuer of the client’s
access right has access to the constraint information in that access right.

The information leak just described occurs because Alice knows the constraint speci-
fication in the calendar service’s access right. In the given scenario, Alice has this knowl-
edge because she issued this access right. If the contents of access rights were public, Alice
would have this knowledge even if the access right had been issued by someone else. In
this case, ensuring that the issuer of an access right has access to constraint information
in the access right would not prevent confidential knowledge about this information from
leaking to Alice. This observation suggests that access rights should not be public and that
they are kept confidential. In general, we do not expect access rights to be public, since
issuing an access right is often a personal decision, which should be kept private.

Similarly, if access rights were public, the primary service could learn confidential
knowledge about constraint information in the client’s access right to the primary infor-
mation without having to collude with the issuer of the access right.

In summary, the centralized entity must validate that the client has access to the con-
straint information in the client’s access right to the primary information and that the
issuer of an access right has access to the constraint information in the access right. Fur-
thermore, access rights should be kept confidential.

5.4.2 Service-Based Access Control

In service-based access control, the client asks the primary service directly for the primary
information. The primary service has to ensure that there is an access right for the client.
For a constrained access right, the service has to contact the corresponding constraint
services and check satisfaction of the constraints. The constraint services also run access
control.

In service-based access control, we assume that, in practice, the client being granted a
(constrained) access right knows the contents (e.g., constraint specifications) of this access
right. In addition, a service knows the contents of access rights to information that the
service provides and to information that the service is authorized to access. Finally, an
issuer of an access right obviously also knows the contents of the access right. Therefore,

113

we have to prevent confidential knowledge about constraint information from leaking to
the client, to services, and to the issuer of an access right.

We can use the algorithm introduced in Section 5.4.1 to prevent the client from deriving
confidential knowledge about constraint information. Here, it is the primary service that
runs the algorithm. While resolving constraints in the client’s access right, the primary ser-
vice contacts corresponding constraint services and becomes a client itself. The constraint
services ensure that the primary service has access to the requested constraint informa-
tion, so this information cannot leak to the primary service. Furthermore, the constraint
services must avoid that confidential knowledge about constraint information in the pri-
mary service’s access rights leaks to the primary service, using the algorithm given above.
While resolving constraints in these access rights, the constraint services recursively might
have to contact additional constraint services.

Similar to centralized access control, ensuring that a service has access to constraint
information in an access right to the information offered by the service, as service-based
access control does by design, is not sufficient to prevent confidential knowledge about
constraint information from leaking to the issuer of an access right. For example, the sce-
nario discussed in Section 5.4.1 is also relevant for service-based access control. There-
fore, before answering a request for information, a service must ensure that the issuer of an
access right to the information has access to the constraint information listed in the access
right.

Furthermore, there could be additional information leaks if access rights were public.
If the client knew the contents of the primary service’s access rights to the constraint infor-
mation listed in the client’s access right to the primary information (and, recursively, the
contents of other service’s access rights), confidential knowledge about constraint infor-
mation in a service’s access right could leak to the client. Again, not making access rights
public avoids this problem.

A service must ensure that the issuer of an access right has access to constraint infor-
mation listed in the access right. Therefore, the service must know some of the issuer’s
access rights. However, it can be difficult for the service to learn about these access rights
since, as mentioned above, access rights should not be public. This observation suggests
that the types of constraints listed in an access right should be kept simple. Namely, we
expect most confidential context-sensitive constraints to involve either the subject or the
issuer of an access right, but not other entities. In the first case, the issuer by default has
access to the constraint information. In the second case, the client (or a service) can inform
a queried service of its access rights.

In summary, a service must ensure that the client (or another service) has access to

114

the constraint information in the client’s (or service’s) access right to the requested infor-
mation and that the issuer of an access right has access to the constraint information in
the access right. Furthermore, access rights should be kept confidential and the types of
constraints simple.

5.4.3 Client-Based Access Control

In client-based access control, the client needs to prove to the primary service that it is
authorized to access the primary information. The service makes the access decision by
validating this proof of access. The proof lists the client’s access right to the primary infor-
mation and confirms that each of the constraints in the access right is satisfied. Therefore,
before contacting the primary service, the client first has to build proofs of access for
constraint information, contact the corresponding constraint services, and have a service
confirm that a constraint is satisfied. We use the termassurancefor representing such a
confirmation. (We present ways to implement such assurances in Section 5.8.)

In client-based access control, a client being granted a (constrained) access right knows
the contents (e.g., constraint specifications) of this access right. A service can learn the
contents of access rights listed in a proof of access. Finally, an issuer of an access right
obviously also knows the contents of the access right. Therefore, we have to prevent
confidential knowledge about constraint information from leaking to the client, to services,
and to the issuer of an access right.

While resolving the constraints in its access right to the primary information, the client
needs to build proofs of access for the corresponding constraint information. Therefore,
confidential knowledge about this constraint information cannot leak to the client.

The primary service can learn the constraint specifications in the client’s access right
to the primary information by looking at the proof of access. Since the proof also contains
an assurance for each constraint, confidential knowledge about the constraint information
could leak to the primary service. Therefore, the client must validate that the primary
service has access to the constraint information before sending the proof to the service.

For this validation, the client must know the primary service’s access rights to the
constraint information. For each access right, the client has to validate its constraints,
which requires the client to retrieve constraint information from a constraint service, using
access rights issued to the client. If the issuer of such an access right colluded with the
primary service, they would know that whenever the primary service is contacted, the
constraints in this access right are satisfied and they could derive confidential knowledge
about constraint information in the access right. Therefore, the client must also ensure that

115

the issuer of an access right has access to constraint information in the access right.

If access rights were public, the primary service could exploit the information leak
just described without having to collude with the issuer of an access right. Again, this
observation suggests that access rights are not made public. However, building a proof
of access requires the client to know the primary service’s access rights to the constraint
information listed in the client’s access right to the primary information. We can solve this
conflict in the same way as for the service-based approach, that is, by keeping the types
of constraints listed in an access right simple and by having constraints involve either the
subject or the issuer of an access right. In the first case, the client can decide whether it
wants to grant access to the primary service. In the second case, when issuing an access
right, the issuer could also inform the subject of the services that it grants access to its
constraint information listed in the access right. Another option are hidden constraints,
which prevent a service from learning the constraint specification in the first place (see
Section 5.6).

In summary, the client must ensure that the primary service has access to the constraint
information in the client’s access right to the primary information and that the issuer of
an access right has access to the constraint information in the access right. Furthermore,
access rights should be kept confidential and the types of constraints simple.

5.4.4 Third Entity

For client-based and service-based access control, it is possible for the client and a service,
respectively, to have a separate entity deal with constraints on their behalf. This entity
retrieves constraint information from constraint services and lets a client or service know
whether a constraint is satisfied.

This case raises similar issues as the other scenarios. If the separate entity had the same
set of access rights as the client or the service on whose behalf it acts, this case would be
identical to having the client or service resolve constraints directly. If the separate entity
had more access rights than a client or a service, we would risk information leaks similar
to the case of centralized or service-based access control, where the third entity is now in
the role of the centralized entity or the service.

Apart from the presented access-control approaches, hybrid approaches are possible.
For example, in client-based access control, the primary service could exploit client-based
access control, whereas a constraint service adopts service-based access control. Our pre-
sented algorithms also apply to hybrid approaches. In the example, the constraint service
ensures that no constraint information leaks to the client and the client validates that no

116

constraint information leaks to the primary service.

5.5 Access-Rights Graphs

We have assumed that the client’s access rights to constraint information are unconstrained.
However, in the more general case, such an access right can be constrained, as discussed
in this section.

Our discussion in the previous section revealed that making access rights public can
result in information leaks that are difficult to avoid. Therefore, in the rest of this chapter,
we assume that access rights are not public. Namely, only the issuer of an access right
and the subject being granted access (e.g., the client) know about the access right. For
centralized and service-based access control, we assume that the centralized entity and a
service offering the information, respectively, are also aware of the access right.

5.5.1 Design

Our access-control algorithms for the general case exploitaccess-rights graphs. An access-
rights graph captures relationships between access rights and constraints on them. The
graph allows for easy detection of potential problems, such as information leaks, loops, or
conflicting constraints, and simplifies resolution of constraints.

An access-rights graph is built for particular information in terms of an entity’s access
rights. The graph represents the conditions under which this entity should be granted
access to the information. The edges and nodes of the graph are derived from the entity’s
access rights. In particular, a node in the graph represents information, and the edges
outgoing from a node denote the constraints on an access right (or on a chain of access
rights) to the information in the node. An edge has a set of values attached to it, meaning
that the information in the node that the edge is pointing to is constrained to the values in
the set. If an access right to information is unconstrained, the corresponding node has an
outgoing edge that goes back to the node and that is marked with “∗”; such a node cannot
have more than one outgoing edge. We call the node containing the information for which
the graph is builtroot node. Figure 5.2 shows an example of an access-rights graph. For
simplicity reasons, we assume that all issuers of access rights agree on the service that
provides a particular type of constraint information. Note that since the access right to
C.x is constrained to particular values of this information, we cannot necessarily avoid
confidential knowledge aboutC.x from leaking in case of a denied request, as outlined in

117

A.x
{s}

{u}

{t}

C.zB.y

{r,t}

*

D.w

Figure 5.2: Access-rights graph. The graph is for informationA.x in terms ofE’s (short-

ened) access rightsA says ((B.y ∈ {s} ∧ C.z ∈ {t}) ⊃ (E
A.x

====⇒ A)), B says ((D.w ∈

{u}) ⊃ (E
B.y

====⇒ B)), C says ((C.z ∈ {r, t}) ⊃ (E
C.z

====⇒ C)), andD says E
D.w

====⇒ D.
The node listingA.x is the root node.

Section 5.2.3.

We call an access-rights graphconflict-freeif for nodes with multiple incoming edges,
the intersection of the sets of values attached to these edges is not empty. Figure 5.4
shows an example of a graph with a conflict. There could be multiple graphs for the same
information in terms of an entity’s access rights if the entity had multiple access rights to
this information, but with different constraints on them.

The entity whose access rights are used for building an access-rights graph should be
granted access to the information in the root node if 1) each node has at least one outgoing
edge (i.e., there is an access right to the information in the node), 2) the graph is conflict-
free, and 3) the current value of the information in each node is listed in each of the node’s
incoming edges.

Assuming that an entity’s access rights are locally available, building a conflict-free
access-rights graph out of these access rights is a completely local step. We present the
pseudocode in Figure 5.3. Ensuring that each constraint is satisfied requires traversal of
the graph and contacting remote services that offer the information in a node. We call this
graph traversalresolution.

Access-rights graphs can become arbitrarily complex. At present, we expect them to
be rather simple for practical scenarios, such as the graph shown in Figures 5.2. This
expectation is based on two observations: First, people typically need to specify access

118

// The algorithm assumes thatnodes contains the current set of nodes in the access-
// rights graph. To start with,nodes contains the root node of the graph and the
// algorithm is called for this node. In addition,rights contains the access rights of the
// entity in terms of which the graph is built. The algorithm also assumes the existence
// of a routineboolean has conflict(Node node, Values values) that
// returns true if the intersection of the values attached to any incoming edge ofnode
// andvalues is empty.

// Return true if there is conflict-free access-rights graph for the information in the node.
booleanbuild graph(Node current node)
{

// Retrieve access rights to information incurrent node .
// (There could be multiple access rights (and thereby graphs).)
Set rights = rights.retrieve(current node.get information());
while (rights.notEmpty()) {

AccessRight right = rights.remove();
Constraints constraints = right.get constraints();
while (constraints.notEmpty()) {

Constraint constraint = constraint.remove();
// If there already is a node for the information in the constraint, retrieve it.
Node node = nodes.retrieve(constraint.get information);
if (node != null) {

// Go throughnode ’s incoming edges and check for conflict with values
// permitted by constraint.
if (has conflict(node, constraint.get values()) break ;
// Establish an edge fromcurrent node to existing node listing values in constraint.
nodes.establish edge(current node, node, constraint.get values());
} else {

// Establish new node for constraint information and edge to it fromcurrent node .
Node new node = nodes.establish node and edge(constraint,

current node);
// Try to build subgraph for information in this node.
if (!(build graph(new node))) {

nodes.remove node and edge(new node);
break ;
}
}
}
return true ;
}
return false;
}

Figure 5.3: Building of access-rights graphs. The pseudocode gives the algorithm for
building a conflict-free access-rights graph.

119

A.x
{s}

{u}

{t}

C.z

{r}

B.y

A.x
{s}

{u}

{t}

*

D.w

Figure 5.4: Access-rights graphs with conflict. The graph has conflicting constraints on
D.w.

rights in a manual way, which tends to lead to simple access rights, having no or only a few,
broad constraints. Second, the amount of context information that is currently available
about people and that can be used to constrain access is still rather limited. However, both
observations probably will no longer hold in the future. For example, if users let electronic
agents manage access rights on their behalf, access rights will become more complicated
and can involve more and narrower constraints. Also, the amount of information available
about people is steadily increasing.

Access-rights graphs are required regardless of the access-control approach. Let us
now discuss how we employ these graphs in centralized, service-based, and client-based
access control.

5.5.2 Centralized Access Control

As outlined in Section 5.4.1, centralized access control must ensure that the client can
access primary and constraint information and that the issuer of an access right can ac-
cess constraint information in the access right. For both validations, the centralized entity
builds and resolves access-rights graphs. First, there has to be a graph for the primary
information in terms of the client’s access rights. Second, when resolving this graph, the
entity must ensure that, for each node in this graph, the issuer(s) of the (chain of) access
right(s) to the information in the node has access to the information in the nodes pointed
to by that node, which requires building and resolving additional graphs for each node.
Similarly, resolution of these graphs might recursively require additional graphs. We give

120

the pseudocode in Figure 5.5. Resolution of a graph starts at a node with no outgoing
edges other than an edge pointing to itself and works its way toward the root node. If the
graph had a loop involving more than one node, resolution could start at any node in the
loop (not covered by the pseudocode).

For example, for the graph given in Figure 5.2, the centralized entity must ensure
D.w = u and thatB has access to this information, which requires building and resolving
an access-rights graph forD.w in terms ofB’s access rights. Similarly, the entity has to
check whetherB.y = s andC.z = t and whetherA has access to this information, that is,
it must build build and resolve graphs forB.y andC.z in terms ofA’s access rights.

An access-rights graph is built for information in terms of an entity’s access rights.
Since access control might trigger recursive building of graphs, it is possible that the same
graph is built multiple times and that loops occur. For example, assume that Bob grants
Alice access to his location under the constraint that she is at a particular location and
that Alice grants Bob access to her location under the constraint that he is at a particular
location. If Alice wants to access Bob’s location, the centralized entity will build and
resolve a graph for Bob’s location in terms of Alice’s access right. To prevent constraint
information from leaking to Bob, the resolution will trigger building and resolution of a
graph for Alice’s location in terms of Bob’s access right, which will trigger building of the
first graph again, and so on. The centralized entity can detect such a loop and resolve it.

5.5.3 Service-Based Access Control

In service-based access control, a service must ensure that the client (or another service)
has access to the requested information and to the constraint information in the access
right to this information. Furthermore, a service must ensure that the issuer of an access
right has access to constraint information in the access right

Therefore, the primary service builds a conflict-free access-rights graph for the primary
information in terms of the client’s access rights. It then resolves the graph and retrieves
constraint information from constraint services. These services will build and resolve
access-rights graphs in terms of the primary service’s access rights, which could require
contacting additional constraint services. Furthermore, a service needs to ensure that the
issuer of an access right has access to constraint information in the access right. A service
running access control exploits the algorithm shown in Figure 5.5. Since access rights are
not public, the client (or a service) must inform a contacted service of its access rights in
order for the service to be able to build a graph.

121

// Return true if principal has access to information at given value.
booleancan access(Principal principal, Information information,

Value value)
{

Set graphs = conflict-free access-rights graphs with at least one outgoing edge
per node forinformation in terms ofprincipals ’s access rights. If
value != null and information in root node of a graph is constrained to particular
values of this information,value must be contained in these values.

while (graphs.notEmpty()) {
Graph graph = graphs.remove();
if (is resolvable(graph)) return true ;
}
return false;
}

// Return true if the constraints in the access-rights graph are satisfied and if there
// are no information leaks.
booleanis resolvable(Graph graph)
{

// Gather nodes that can be resolved.
Set readySet = all nodes ingraph with no outgoing edges other than an edge

to itself;
while (readySet.notEmpty()) {

Node node = readySet.remove();
Information information = node.get information();
Value value = retrieve current value ofinformation from constraint service;
if (value is not listed in all incoming edges ofnode) return false;

// Ensure that issuers can access constraint information. (For client-based access
// control, also ensure that service can access this information.)
parents = nodes with an outgoing edge tonode ;
while (parents.notEmpty()) {

Node parent = parents.remove();
Set issuers = issuers of access rights to information inparent ;
while (issuers.notEmpty()) {

Principal issuer = issuers.remove();
if (!(can access(issuer, information, value))) return false;
}
if (all nodes with incoming edge fromparent have been removed fromreadySet)

readySet.add(parent);
}
}
return true ;
}

Figure 5.5: Access-control algorithm. Access control consist of building a conflict-free
access-rights graph and of resolving this graph. In addition, access control must recur-
sively ensure that issuers of access rights can access constraint information.

122

5.5.4 Client-Based Access Control

In client-based access control, the client must build proofs of access for the primary and
constraint information. In particular, the client builds a conflict-free access-rights graph for
the primary information in terms of its access rights and assembles proofs for the various
nodes while resolving this graph. In addition, the client must ensure that no confidential
knowledge about constraint information leaks to a service receiving a proof of access or
to an issuer of an access right. Therefore, for each node in the graph, the client builds
additional graphs for the information in the nodes pointed to by that node in terms of the
access rights of the service offering the information in that node. Similarly, for each node,
the client builds additional graphs for the information in the nodes pointed to by that node
in terms of the access rights of the issuer(s) of the (chain of) access right(s) associated with
that node.

A client implements the algorithm shown in Figure 5.5. There are two differences in
is resolvable() when compared with the centralized approach: First, as mentioned
above, the client must check that a service can access constraint information, in addition
to the issuer of an access right. Second, a client needs to build proofs of access while
resolving an access-rights graph. In particular, when contacting a constraint service, the
client will receive an assurance stating that a constraint is satisfied. Once it has received
assurances for all the nodes that a node is pointing to, it can build a proof of access for the
information in this node and contact the corresponding constraint (or primary) service.

For example, in the graph shown in Figure 5.2, the client first retrieves an assurance
for D.w = u from the constraint service offeringD.w, using its access right as a proof of
access. The client then uses this assurance and its access right toB.y to build a proof of
access for getting an assurance forB.y = s. Similarly, it gets an assurance forC.x = t.
These two assurances and the access right toA.x allow the client to build a proof of access
for A.x. The service offeringA.x validates the proof and returns the current value ofA.x.

Proof building becomes difficult for conflict-free access-rights graphs with loops in-
volving more than one node, since there is no obvious node at which a client can start
resolution. There are multiple ways to deal with such cases. If the information of all the
nodes in the loop was offered by the same service, a client could have this service resolve
the loop. If multiple services offered this information, a client could contact some of these
services and ask them to resolve the constraints on its behalf. This option requires trust
relationships between the services so that they can exchange constraint information. None
of this constraint information must leak to the client unless all the constraints are satisfied.

123

5.6 Hidden Constraints

We have assumed that the issuer of an access right, the subject of the access right, the
centralized entity in centralized access control, and a service offering the information that
the access right grants access to in service-based access control know about the contents,
such as constraint specifications, of the access right. Also, in client-based access control,
a service will learn the contents of an access right that is part of a proof of access.

If an entity knows the constraint specifications in an access right, we must prevent
constraint information from leaking to this entity. We can avoid these checks by keeping
constraint specifications secret from the entity, that is, by employinghidden constraints.
A hidden constraint keeps (parts of) its constraint specification secret from an entity. If
a constraint specification is hidden from the entity, the entity cannot infer confidential
knowledge about the constraint information listed in the specification, even if the entity is
able to observe requests exploiting an access right containing the hidden constraint. Note
that hidden constraints do not hide the existence of a constraint in an access rights from an
entity, they hide only its specification.

Hidden constraints prevent us from having to ensure that the entity from which the
constraint specification is hidden has access to the constraint information. An additional
benefit is that hidden constraints can involve information to which the entity does not have
access in the first place. For example, in client-based access control, assume that Alice
uses a trusted service to provide important information about her. Alice grants Bob an
access right to this information, given that he is at a particular location. If the constraint
was not hidden from the service and Bob did not trust the service, Bob would be in a
dilemma: Either he has to release his location information to the untrusted service or he
cannot learn Alice’s important information. Hiding the constraint from the service avoids
this dilemma.

Hiding a constraint specification from an entity does not mean that the entity cannot
finally learn the specification. If the entity had access to the constraint information in the
specification, it could learn the specification by observing the system. However, this is not
an information leak, since the entity has access to the constraint information.

5.6.1 Design

Let us now explore which parts of a constraint specification we can hide from which entity
for the three discussed access-control approaches.

Obviously, we cannot keep the constraint specifications in an access right secret from

124

the issuer of the access right or from the centralized entity in centralized access control.
However, it is possible to hide (parts of) the constraint specifications from other entities.
A constraint specification consists of constraint information, a set of permitted values, and
the identity of the constraint service responsible for acknowledging constraint satisfaction.
Ideally, we keep the entire specification secret from an entity. However, in some cases, it
is possible only to keep the first two items secret.

In centralized access control, we can hide a constraint specification in an access right
entirely from the subject of the access right by keeping the access right secret from the
subject.

In service-based access control, we can hide a constraint specification entirely from
the subject of an access right in the same way as in centralized access control. It is not
possible to hide the specification entirely from a service since the service must know the
identity of the constraint service responsible for resolving the constraint. We can hide only
the constraint information and the set of permitted values from the service. (For example,
the issuer of an access right encrypts the two items with the public key of the responsible
constraint service.) However, depending on the type of constraint information or service,
knowing the constraint service might allow a service to deduce the type of constraint infor-
mation (e.g., when a constraint service provides only one type of information), the owner
of the constraint information (e.g., when a constraint service provides only one individ-
ual’s information), or even the value of the constraint information (e.g., when a constraint
service has limited coverage, such as a location service covering only one building).

In client-based access control, we can exploit the same reasoning as for a service in
service-based access control to hide constraint information and a set of permitted values
from the client. Again, since we cannot hide a constraint specification entirely from the
client, it might still be possible for the client to deduce parts of the hidden specification. In
addition, we can hide a constraint specification entirely from a service. Namely, a service
is not interested in this specification; it wants to know only whether a constraint is satisfied.
To support this feature, the issuer of an access right needs to associate a constraint with the
access right such that a service cannot learn the constraint specification when looking at the
access right in the proof of access, but the client building this proof remains able to gather
assurances for the constraint. Similarly, a service must not be able to learn the constraint
specification when looking at such an assurance. We present a possible implementation in
Section 5.8.2. Such a hidden constraint prevents confidential knowledge about constraint
information in an access right from leaking to a service. Note that the client still needs to
ensure that this knowledge does not leak to the issuer of the access right.

125

5.6.2 Formal Model

When hiding constraints from an entity, we can use the same formal model as the one intro-
duced for non-hidden constraints, but we have to change the representation of constraints.
Clearly, we cannot useB.y ∈ V to express a constraint involvingB.y.

Let us discuss the formal model for hiding constraint specifications from a service
in client-based access control. We require that a service must not learn the identity of
a service that acknowledges the satisfaction of a constraint, since this knowledge might
allow inferring the type of constraint. For example, a constraint service cannot use its
private key for signing an assurance.

We useH̃ for expressing hidden constraints.H̃ is a reference to a constraint specifica-
tion, but must not leak any information about the specification and the constraint service
responsible for the resolution of the constraint. In addition, we require that for eachH̃,
there is aH̃−1 that can be used for expressing satisfaction of a hidden constraint. With
the help ofH̃, such a statement can be validated. For example,H̃ can be a public key
andH̃−1 the corresponding private key. We present two approaches, one based on digital
certificates and another one based on one-way chains, in Section 5.8.2. Statement (5.1)
expressing an access right can be rewritten using a hidden constraint as follows:

A says ((A says H̃) ⊃ (B
C.x

====⇒ A)). (5.9)

Based on our requirements,A implicitly lets H̃ guarantee satisfaction of the constraint
specification referenced bỹH, or

A says H̃
H̃

===⇒ A.

5.6.3 Discussion

We can now summarize what information leaks we have to avoid for the different access-
control approaches. We present this summary in Table 5.1. For an entity running access
control (or building a proof of access in the case of client-based access control) depending
on a constrained access right, this entity needs to ensure that the principals listed in the
table have access to the different types of constraint information in the access right.

126

Approach Constraints
Non-hidden Hidden

Centralized Client, issuer Issuer
Service-based Client, issuer Issuer
Client-based Service, issuer Issuer

Table 5.1: Information leaks. For each approach, we show the potential information leaks
due to deduction of constraint information. For centralized and service-based access con-
trol, constraints are hidden from a client. For client-based access control, they are hidden
from a service.

5.7 Constraints and Information Relationships

Apart from constrained access rights, we could also have constrained information relation-
ships, that is, an information relationship is valid only if certain conditions are met. How-
ever, the usefulness of this feature seems limited. In terms of bundling-based relationships,
we strive to keep these relationships simple, since they will be defined by individuals who
are not necessarily experts in access control. In terms of combination-based relationships,
constraints on these relationships do not make sense since a complex piece of information
either consists of certain other information or it does not; there are no conditions on this
relationship. Therefore, we refrain from incorporating constraints into the establishment
of information relationships.

5.8 Architecture

We now present a client-based access-control architecture that supports access rights with
context-sensitive constraints. Our architecture supports hiding constraints from a service,
not from a client. We give an overview of our architecture, take a closer look at the imple-
mentation of hidden constraints, and discuss how we use digital certificates for expressing
various statements.

5.8.1 Overview

A client builds a proof of access. Figure 5.6 gives an overview of the client’s components
involved in proof building. The access-rights graph component is responsible for building

127

Service Stub

Graph
Rights

Repository
Rights
Access− Access−

Proof Builder

Figure 5.6: Proof-building architecture. The access-rights graph component interacts with
the access-rights repository for building a graph and with service stubs for resolution of
the graph.

and resolving access-rights graphs. This component implements the algorithm given in
Figure 5.5. In order to build a graph, the component interacts with the access-rights repos-
itory. A service stub knows how to interact with a particular service. While resolving
a graph, the access-rights–graph component asks service stubs to get either an assurance
(for nodes other than the root node) or the value of the information (for the root node).

5.8.2 Hidden Constraints

We now discuss how we hide constraints from services. The issuer of a constrained access
right includes only a reference to the constraint specification, but not the actual specifica-
tion, in the access right. The issuer gives both the access right and the constraint specifi-
cation to the client. The client resolves the constraint by presenting the specification to the
corresponding constraint service, which will issue an assurance containing a reference to
the constraint specification. The client includes both the access right and the assurance in
its proof of access. The primary service must ensure that the access right and the assurance
are valid and that they refer to the same constraint specification.

There are multiple ways to implement such a scheme. In our architecture, we rely on
either digital certificates or one-way chains. We now explain the two options.

128

Digital Certificates

In the first approach, a constraint service signs a statement declaring that a constraint is
satisfied. The signature has a lifetime corresponding to the time frame during which the
constraint service believes the constraint to remain satisfied, as explained in Section 5.2.4.
This approach has the advantage that a service can freely choose the lifetime of its sig-
natures, depending on the service’s domain-specific knowledge. The drawback of the
approach is that issuing a digital signature can be an expensive operation. (We present
some measurements in Section 5.9.)

As mentioned in Section 5.6.2, a hidden constraint is represented asH̃ in an access
right. Here,H̃ is a public key that is used to validate assurances signed with private key
H̃−1 saying that hidden constraint̃H is satisfied. The issuer of an access right should
generateH̃ (and H̃−1) itself; H̃ should not correspond to the public key of the service
providing the constraint information. To avoid information gathering based on correlation,
H̃ should not be re-used in different access rights.

The constraint specification referred to byH̃ consists of the following parts:

Constraint definition. This part lists constraint information (e.g.,B.x) and a set of per-
mitted values.

Signing key. The signing key corresponds to private keyH̃−1. It is encrypted with the
public key of the constraint service,S, that provides informationB.x.2 The issuer
of an access right and of a constraint specification choosesS and thereby decides
about the mapping from constraint informationB.x to constraint serviceS.

Validation key. The validation key corresponds to public keyH̃.

Public key of service. This part lists the public key of constraint serviceS.

Integrity data. This data ensures the integrity of the constraint specification. We use a
cryptographic hash of the constraint specification (excluding signing key and in-
tegrity data) and encrypt this hash together with the signing key.

This constraint specification and an access right containing referenceH̃ to it are used
as follows: Their issuer gives both of them to a client. When building a proof of access, the
client retrieves the identity of the constraint service,S, from the specification and gives the
constraint specification toS. The service ensures that the current value ofB.x corresponds

2We use an AES-based hybrid encryption scheme and HMAC for integrity checking.

129

f f

T T TT0 21 3

aa

a

a

f

321

0

Figure 5.7: One-way chain. Each value in the chain,ai, is associated with a time frame.
Valuea0 validates values in the chain.

to one of the permitted values. It then decrypts the ciphertext in the specification to get
H̃−1 and to ensure that the specification has not been tampered with. It usesH̃−1 to issue
an assurance in the form of a digital certificate. The assurance consists of the validation

key,H̃, signed with signing keỹH−1 (i.e., the assurance expressesH̃ says C
H̃

===⇒ H̃).

The client sends the access right together with the assurance to the primary service,
which validates the signature of the access right. For referenceH̃ included in the access
right, the service ensures that there is an assurance coveringH̃ and signed withH̃−1.

One-way Chains

Our second option does not require the generation of a potentially expensive digital signa-
ture when issuing an assurance. Instead, it is based on one-way chains. A one-way chain
consists of a seed valuean and repeated applications of a public one-way function,f , to
this seed, orai−1 = f(ai) for 0 < i ≤ n.

For each hidden constraint, the issuer of an access right choosesn andan and computes
a0. The issuer also picks a time in the future,T0, and a time interval,∆T . In our formal
model, the tuple〈n, a0, T0, ∆T 〉 represents̃H andan represents̃H−1. Given a tuple, it is
possible to computeTi with Ti = Ti−1 + ∆T for 0 < i < n. We associateai with time
frame[Ti−1, Ti] (see Figure 5.7). If a constraint is fulfilled in time frame[Ti−1, Ti], we want
a constraint service to release the associated value,ai. If the primary service manages to
recomputea0 based onai, it knows that the constraint is satisfied. Based on the property
of one-way chains, givenai for time frame[Ti−1, Ti], it is not possible to computeaj for
future time frames[Tj−1, Tj] (j > i).

This approach has the advantage that it is less expensive for a constraint service. In
particular, there are cryptographic hash functions (e.g., SHA-1) that can be used for imple-
mentingf and that are cheap to compute. Another advantage is that the approach allows
trading off performance vs. convenience when deciding about the length of a one-way

130

chain. A one-way chains covers only a limited time period. After this time period, a new
chain must be created and the access right using the chain needs to be re-issued. One the
one hand, longer chains require fewer updates of access rights. On the other hand, longer
chains make it more expensive for a constraint service or a primary service to compute val-
ues in the chain. (To avoid denial-of-service attacks, services can force issuers of access
rights to limit the length of chains by limiting the number of steps that they are willing to
compute.)

The approach has the drawback that it is the issuer of an access right that chooses the
length of the time interval,∆T , during which it expects a constraint to remain satisfied.
A constraint service cannot incorporate its own domain-specific knowledge. However, for
certain types of information, this limitation is not a problem. For example, for access rights
constrained to location information, an issuer can choose an interval of a few minutes.
Since the speed at which individuals move is finite, the error in location remains limited.

For one-way chains, the constraint specification looks as follows:

Constraint definition. This part is identical to the certificate-based case.

Seed.There is the seed of the one-way chain,an. It is encrypted with the public key of
the constraint service,S, that provides informationB.x.

Validation tuple. The validation tuple corresponds to the tuple〈n, a0, T0, ∆T 〉.

Public key of service. This part lists the public key of the constraint service,S.

Integrity data. This part is identical to the certificate-based case.

When receiving a constraint specification from a client, a constraint service ensures
that the constraint is satisfied and decrypts the ciphertext to getan and to detect tampering
attacks. Based on the validation tuple, it determines the number of applications off to an

that are required to getai for the current time frame. Valueai serves as assurance and is
given to the client. The client forwards the value to the primary service. From the tuple
〈n, a0, T0, ∆T 〉 and the current time, this service figures out the number of applications
of f to ai required to geta0. If the service computes a wrong value, either the client is
cheating or the current time frame has moved since the constraint service computedai.
(We assume reasonably synchronized clocks, depending on the granularity of∆T .) In the
latter case, the client will issue another request.

When the primary service manages to recomputea0 from ai, it can cacheai and use
the cached value for validating future requests that exploit the same access right. In this

131

way, a service does not have to recompute the chain fromai to a0 for each request. (Hu et
al. [70] discuss techniques that allow a constraint service to speed up computation ofai.)

Both the approach based on one-way chains and the one based on digital certificates
require a constraint service to perform an asymmetric decryption operation, which can be
expensive. However, it is possible for a constraint service to cache decrypted values. In
this way, when a service is asked to issue an assurance for the same constraint multiple
times, it needs to perform a decryption operation only for the first request.

5.8.3 Digital Certificates

In our architecture, we rely on extended SPKI/SDSI certificates [47] for expressing various
statements. In particular, for non-hidden constraints, a principal issues a single certificate
that expresses both an access right (i.e., Statement (5.1)) and a mapping from constraint
information to a constraint service (i.e., Statement (5.4)). We combine access rights and
mappings for simplicity reasons. If required, it is possible to design a more flexible scheme
where a constraint in an access right only refers to a mapping, but does not directly include
it. For the same reasons, we do not require a principal to list the range of values that the
constraint information can have. We also rely on certificates for expressing assurances
(i.e., Statement (5.6)), except for the approach based on one-way chains. We give three
example statements in Figure 5.8.

In the first example, Carol grants Alice access to her calendar information if Alice is
in Wean Hall 4103 and if an additional, hidden constraint is fulfilled. The non-hidden
constraint should be validated by the constraint service with the given public key. The
second and third example show an assurance for the non-hidden and hidden constraint,
respectively.

It looks possible to implement constraints with threshold constructs, as explained in
Section 3.10. Namely, we could implement a non-hidden constraint as a hidden constraint,
and we could implement hidden constraints with threshold constructs. However, the latter
step fails due to the following reason: For threshold constructs, a certificate lists multiple
principals in thesubject entry. For a principal to exploit such a certificate, (at least) a
given number,k, of the listed principals must issue (maybe indirectly) further certificates
that have this principal as their subject. For the certificate shown in Figure 5.8, the subject
could list both Alice and the constraint validator and requirek = 2. Therefore, Alice could
use this certificate only if the validator issued another certificate to Alice. The problem
with this approach is that it expects all certificates to cover the same kind of statement.
However, in our scenario, the first certificate grants access to information, whereas the

132

(cert
(issuer (pub key:carol))
(subject (pub key:alice))
(permission

(information (pub key:carol) carol calendar entry))
(tag

(nonhidden-constraint
(information (pub key:alice) alice location)
(‘‘Wean Hall 4103’’)
(pub key:service))

(hidden-constraint
(pub key:validator))))

(assurance
(issuer (pub key:service))
(nonhidden-constraint

(information (pub key:alice) alice location)
(‘‘Wean Hall 4103’’)
(pub key:service)))

(assurance
(issuer (pub key:validator)))

Figure 5.8: Extended SPKI/SDSI certificates. We show an access right with constraints
and two assurances. Signatures and lifetimes are omitted.

133

second one would state satisfaction of a constraint.

5.9 Performance Analysis

We now present a performance analysis of our distributed access-control architecture with
support for constraints. We run our measurements on an unloaded Pentium IV/2.5 GHz
with 1.5 GB of memory, Linux 2.4.20, and Java 1.4.2. Our asymmetric cryptographic
operations employ 1024 bit RSA keys. We use SHA-1 for building one-way chains and
authenticating constraint specifications. (Our machine can compute about 330,000 Java-
based hashes/sec.) An experiment is run 100 times. We report the mean and standard
deviation (in parentheses).

We study the cost of access control for the scenario where Carol grants Alice access to
her calendar information under different constraints. In the first experiment, Carol grants
access only if she is currently in her office. Carol does not hide this constraint. In the
second experiment, Carol grants access only if Alice is currently in her office. Carol
hides this constraint. If Carol did not hide the constraint, Alice would have to reveal her
location to the calendar service, which she might have never used before and thus has
no trust relationship with. In this experiment, Carol defines a hidden constraint based on
certificates. The third experiment is identical to the second one, but the constraint service
caches decrypted signing keys. In the fourth and fifth experiment, we repeat the second
and third experiment, but the hidden constraint is based on a one-way chain, instead of
certificates.

We assume that Alice has an unconstrained access right to Carol’s location. In addition,
the calendar service has an access right to Carol’s location information, and Alice is in the
possession of this access right.

The implementation builds an access-rights graph for Carol’s calendar information in
terms of Alice’s access rights. In the first experiment, the implementation learns that it
must retrieves an assurance for Carol’s location before accessing the calendar informa-
tion. It exploits Alice’s access right to retrieve this assurance from the location service.
(The location service fingers Carol’s desktop computer and determines Carol’s location
based on her activity.) Next, the implementation ensures that the calendar service is autho-
rized to access Carol’s location information using the access right granted to the service.
Similarly, Carol must have access to her location information, which is straightforward to
validate. Finally, the implementation combines the assurance received from the location
service and Alice’s access right to the calendar information in a proof of access and sends
the proof to the calendar service, which is a centralized calendar system running Oracle

134

CorporateTime.

In the other experiments, the implementation must retrieve an assurance for Alice’s
location instead of Carol’s location. Furthermore, the implementation does not have to
verify that the calendar service has access to Alice’s location, since the constraint is hidden
from the service. The implementation still needs to ensure that Carol as the issuer of the
access right with Alice’s location information as constraint information can access this
information. The implementation can use an access right previously issued by Alice for
this purpose, or it could ask Alice whether she wants to release her location to Carol.
Finally, the proof of access is built in the same way as in the first experiment.

In the first experiment, the mean response time experienced by the client is 463 ms
(26 ms). Detailed results are in Table 5.2. About 25% of the cost is due to retrieving an
assurance from the constraint service. Most of this overhead is caused by setting up an
SSL connection, which requires two costly RSA decryption/signing operations (about 16
ms each), and by acquiring the location information. The cost for issuing an assurance
corresponds to the cost of generating a digital signature. Access control takes only a few
milliseconds, the main cost is checking a signature.

Constraint processing has only limited influence on the primary service. In addition
to checking the signature of the client’s access right, it now also needs to validate the
signature of the assurance. The main cost is due to SSL and the retrieval of the requested
information. This SSL connection is more expensive than the first one. Closer inspection
reveals that the additional delay is due to Java’s garbage collection triggering during the
setup.3

In the second experiment, we use a hidden constraint. The mean response time in-
creases to 485 ms (14 ms). As shown in Table 5.2, the main cause for this increase is the
larger cost for creating an assurance. Namely, the constraint service needs to decrypt the
ciphertext in the constraint specification before it can issue an assurance. Deserialization
cost also becomes larger since the constraint specification is now separate from the access
right.

The third experiment is identical to the second one, but the constraint service caches
decrypted ciphertexts. Therefore, the cost for issuing an assurance is reduced to the cost
for generating a signature, as presented in Table 5.2.

For the next experiments, we use a hidden constraint based on one-way chains in
Carol’s access right. The chain has 2,016 steps and∆T = 5 minutes, that is, the chain
covers a one-week period. During the lifetime of the one-way chain, the number of hash

3Choosing different amounts of memory allocations or using incremental garbage collection has no or
negative influence on the results.

135

Entity Step Non-hidden Hidden Hidden,
w/ caching

µ (σ) µ (σ) µ (σ)
Client/constraint service SSL socket creation 50 (3) 50 (3) 50 (3)
Constraint service Deserialization 13 (2) 18 (2) 18 (3)
Constraint service Access control 3 (1) 4 (2) 3 (2)
Constraint service Retrieve location 37 (3) 38 (3) 38 (3)
Constraint service Issue assurance 17 (1) 35 (1) 17 (1)
Client/primary service SSL socket creation 92 (12) 96 (16) 96 (16)
Primary service Deserialization 23 (4) 21 (7) 20 (2)
Primary service Access control 5 (2) 5 (2) 5 (2)
Primary service Retrieve calendar entry202 (23) 204 (16) 201 (11)

Total 463 (26) 485 (14) 469 (15)

Table 5.2: Client-response time. Mean and standard deviation of elapsed time for security
operations (in bold) and for other, expensive operations using either non-hidden or hidden,
certificate-based constraints [ms].

0 1/2 week 1 week
0

5

10

15

20

25

30

35

40

45

50

Lifetime

P
ro

ce
ss

in
g

tim
e

[m
s]

Constraint service
Constraint + primary service
Constraint service (with caching)
Constraint + primary service (with caching)

Figure 5.9: The curves show the processing time it takes the constraint service to issue
an assurance and the cumulative cost of issuing this assurance and of the primary service
running access control, varying over the lifetime of the hash chain

136

operations to be computed changes both for the constraint service and for the primary ser-
vice. For example, at the beginning, the constraint service needs to compute 2,015 steps,
after 1/2 week 1,008 steps, and after one week zero. This observation is confirmed by the
first two curves in Figure 5.9, which show a) the constraint service’s cost for issuing an
assurance and b) the cumulative cost for issuing this assurance and for the primary ser-
vice’s cost for running access control. The cumulative cost remains constant. The results
can be explained with the help of Figure 5.7: The number of hash operations required for
computing the value associated with a time frame decreases over time, whereas the num-
ber of hash operations required for this value’s validation increases, so the total number of
operations remains constant. For this experiment, the mean client response time is about
468 ms (23 ms), which is less than in the case with hidden, certificate-based constraints
(without caching).

Figure 5.9 also shows the processing time for the case where the constraint service
caches decrypted ciphertexts and where the primary service caches one-way chain values
that it receives from the client and that it successfully validates. The cumulative cost is
minimal after one week, when the constraint service does not need to compute any hash
operations and just returns the seed of the chain. For this case, the mean client-response
time is 439 ms (14 ms).

5.10 Related Work

There are several areas of research that are relevant to our work. In particular, let us discuss
context-sensitive access control in other pervasive computing environments, in role-based
access control, and in access-control models designed with constraints in mind. We also
take a look at inference-control research and automated trust negotiation

Multiple frameworks for pervasive computing environments support context-sensitive
access control to confidential information [5, 38, 51, 93]. Al-Muhtadi et al. [5], Chen et
al. [38], and Gandon and Sadeh [51] each employ centralized rule engines for running
access control. None of them discusses whether and how they address information leaks
caused by constraints. Minami and Kotz [93, 94] present a service-based access-control
architecture that protects information in constraints. Access rights are public in their archi-
tecture. In case the primary service has an access right to the constraint information listed
in the client’s access right, the authors assume that there are no constraints in the service’s
access right. This limitation avoids the information leak mentioned in Section 5.4.1, where
the client learns confidential knowledge about the constraint information in the service’s
access right.

137

Covington et al. [42, 43], Neumann and Strembeck [98], and Bacon et al. [10] add
context awareness to role-based access control. The first two approaches make the assign-
ment of a permission to a role conditional on the current context; the third one conditions
role activations on the current context. The first two approaches assume centralized en-
vironments managed by a single entity; the third one supports distributed environments,
where different entities manage roles. None of the approaches considers information leaks
caused by context-sensitive constraints.

Classic access control models, such as mandatory access control, discretionary access
control, or role-based access control, have no or very limited support for context-sensitive
access rights to information. This limitation has been addressed in newer models, such
as UCONABC [102] or GAA API [98]. In UCONABC (Usage Control based on Au-
thorizations, oBligations, and Conditions), conditions can be used to support our notion
of constraints. Similarly, the GAA API (Generic Authorization and Access-control API)
supports various types of context-sensitive constraints. The authors of the two models do
not discuss how their models address information leaks that context-sensitive constraints
could cause.

McDaniel [91] discusses various evaluation issues for constraints in a distributed en-
vironment (e.g., asynchronous vs. synchronous evaluation). In addition, he lists security
properties that such constraints should provide (e.g., non-repudiation) and reviews differ-
ent implementation approaches. He does not discuss information leaks caused by con-
straints.

In information leaks due to confidential constraints, an attacker infers confidential
knowledge by knowing the constraint specification in an access right and by observing a
request exploiting this access right. Inference-control research [46, 3, 32] has looked at the
problem of attackers inferring confidential knowledge by sending (sequences of) queries
to a statistical database and correlating the received statistics. Statistics contain a trace of
the data that have been used in the computation. Therefore, correlating multiple statistics
might allow an attacker to infer confidential information about an individual. For example,
by comparing the average salaries of two groups differing only by a single record, the at-
tacker can deduce the salary of the individual whose record is in only one of the groups. As
explained in Section 5.4, similar to information leaks due to confidential constraints, there
can be positive and negative compromises and exact and partial compromises. Inference-
control research has come up with restriction-based and perturbation-based techniques to
protect against the inference of confidential information from statistical queries [32]. The
former techniques restrict statistical queries by considering the size of the query set, by
controlling overlapping between successive query sets, by keeping a history of queries,
and by limiting the number of attributes involved in a query. The latter techniques intro-

138

duce some modification to the data stored in a database or to the requested statistics during
the processing of a statistical query. Castano et al. [32] provide an overview of the various
techniques.

Hidden constraints keep constraint specifications secret from clients or services. In
automated trust negotiation [130], a client or a service keeps its credentials or access policy
initially secret from a service or client, respectively. Here, after successfully completing
(potentially multiple rounds of) negotiations between the client and the service, a party will
typically know the other party’s policy or credentials. For hidden constraints, the constraint
specification must remain secret from a client or service throughout the processing of a
query. A client or service might eventually be able to learn a constraint specification if
it was authorized to access the constraint information listed in the specification and if it
was able to observe the system. However, since the entity has access to the constraint
information, this scenario does not result in an information leak. We provide a more
detailed discussion of automated trust negotiation in Section 5.10.

5.11 Summary

We showed that context-sensitive constraints on access rights can lead to information leaks
and that, depending on the access-control approach, information leaks must be addressed
in different ways. We also introduced the concepts of access-rights graphs and hidden
constraints. Access-rights graphs represent the conditions under which access should be
granted and support easy detection of loops and conflicts. Hidden constraints avoid infor-
mation leaks by hiding constraints from various entities.

We presented a client-based access-control architecture that supports context-sensitive
constraints on access rights and that avoids information leaks. We discussed two imple-
mentations of hidden constraints, one based on digital signatures and another one based
on one-way chains. Our sample implementation and its deployment demonstrate the fea-
sibility of our approach. Its performance is competitive.

Our discussion revealed that access rights should be kept confidential, else information
leaks due to confidential constraints become difficult to avoid. Furthermore, the types of
constraints should be kept simple, otherwise running the algorithm to avoid information
leaks can become complex. In particular, our discussion suggested that constraints should
involve either a subject being granted an access right or a principal issuing an access right.

In the next chapter, we discuss how traditional client-based access control can result in
information leaks when applied to pervasive computing and how to avoid these leaks.

139

140

Chapter 6

Obscured Proof-of-Access Descriptions

Traditional client-based access control assumes that either a client knows the nature of the
required proof of access or that a service can inform the client of this nature. However, for
complex information, this assumption no longer holds. If Carol’s calendar entry states that
she is meeting with Bob, Alice needs to present a proof of access consisting of access rights
to Carol’s location and activity information and to Bob’s location and activity information.
However, Alice does not know that Carol is meeting with Bob, so she does not know that
she has to submit access rights to Bob’s location and activity information. Similarly, the
calendar service cannot tell Alice that she has to present access rights to Bob’s information,
since otherwise Alice could deduce that Carol is currently meeting with Bob, which could
be an information leak. In this chapter, we present a solution for this problem in the context
of pervasive computing, based on cryptography.

6.1 Overview

A näıve solution for a client that wants to access complex information, such as a calendar
entry, is to have the client transmit a proof of access listing all potentially relevant access
rights, such as all the client’s access rights to location and activity information. This
solution has privacy and bandwidth issues: a service can learn a lot about a client, and a
client might have to transmit a lot of data.

Our proposed solution has a service return a description of the required proof of ac-
cess to a client, but the service obscures the description such that the client can interpret
the description only if the client has some secret knowledge [62]. The client has this se-
cret knowledge only if it has access to the information listed in the proof description. In

141

particular, our contributions include

• a novel application of hierarchical identity-based encryption in the context of client-
based access control,

• an extension of an existing scheme for hierarchical identity-based encryption to sup-
port multiple (hierarchical) constraints on access rights,

• a novel way for dealing with expiration in identity-based encryption, and

• the first implementation of a hierarchical identity-based encryption scheme, to the
best of our knowledge.

We start by listing the requirements that an obscured description of a proof of access
needs to fulfill (Section 6.2). Next, we introduce hierarchical identity-based encryption
and discuss how we use it for obscuring proof descriptions in pervasive computing (Sec-
tion 6.3). We explain how obscured proof descriptions interact with forwarded access
rights, information relationships, and confidential constraints (Section 6.4). Finally, we
have implemented our solution in a pervasive computing environment (Section 6.5).

We will provide an evaluation and a discussion of the relative strengths and weaknesses
of our example implementation in the next chapter (i.e., Section 7.6), where we discuss
another application scenario for hierarchical-identity-based encryption in pervasive com-
puting.

6.2 Requirements

In client-based access control, if a client does not know the nature of the required proof
of access, a service will give it a description of this proof, which lists the information for
which the client needs to present access rights. However, when this proof description leaks
confidential knowledge, the service must obscure it. Let us summarize the requirements
for this case:

Indistinguishability. The service must obscure the description such that a client learns
nothing about the owner of the information listed in the description, unless the client
has some secret knowledge. The client has this secret knowledge only if it has an
access right to the information.

142

Constraints. As mentioned in Section 2.2.2, access rights can have constraints on them.
These constraints should also apply to a client’s ability to interpret an obscured
proof description. For example, when a client’s access right to an information item
expires, the client should no longer be able to interpret an obscured proof description
asking for this item. To support this feature, each possible value of a constraint
must require separate secret knowledge. For instance, a client’s secret knowledge
allowing interpretation of an obscured proof description on January 1 must not allow
interpretation on January 2. This requirement leads to an increase in the secret
knowledge to be managed by the client. The problem becomes worse when there
are multiple constraints on an access right. We observe that many constraints are
of a hierarchical nature. Therefore, we want a solution that supports hierarchical
constraints. For example, if a client has secret knowledge for January, it can derive
secret knowledge for January 1, January 2,... This feature simplifies management of
the secret knowledge.

In the first part of this chapter, we limit ourselves to constraints whose current value
is publicly known (e.g., current time). We discuss an extension to support con-
straints that involve confidential information (e.g., current location of the client or
the queried individual) in Section 6.4.4.

Granularity awareness. Some information in pervasive computing (e.g., location infor-
mation) is available at different granularities. To enforce that understanding an ob-
scured proof description asking for fine-grained information does not allow one to
understand an obscured proof description asking for coarse-grained information, the
client’s secret knowledge required for this understanding must be different for the
two cases. Similar to constraints, a naı̈ve implementation of this requirement can
make management of the secret knowledge difficult. We can address this problem
with a solution that supports hierarchical secret knowledge. In particular, if a client’s
secret knowledge allowed the client to interpret an obscured proof description ask-
ing for fine-grained information, the same knowledge should also allow the client to
interpret an obscured proof description asking for coarse-grained information. This
feature simplifies management of the secret knowledge.

Personalization. We want obscured proof descriptions to be personalized for a client. In
this way, if one or multiple clients leaked their secret knowledge required for under-
standing an obscured proof description asking for some information, this knowledge
would be useless to anyone else, and other clients being able to understand an ob-
scured proof description asking for the same information would not have to acquire
new secrets.

143

Asymmetry. As mentioned in Section 3.1, access rights are service independent. A ser-
vice generating an obscured proof description listing specific information must not
be able to interpret an obscured proof description listing the same information gen-
erated by another service (unless the former service has the required access rights).
For example, an attacker could set up its own calendar service and have the ser-
vice return obscured proof descriptions. However, the attacker must not be able to
interpret obscured descriptions generated by another calendar service.

6.3 Obscured Proof-of-Access Descriptions

We want a client-based access-control architecture where obscured proof descriptions are
simple to manage, aware of granularity, and constrainable. The solution also has to be
asymmetric, provide indistinguishability, and be personalizable. Identity-based encryption
(IBE) is a good fit for these requirements. It is asymmetric and provides indistinguishabil-
ity. Since public keys are strings, proof management and personalization become simple.
In addition, a hierarchical version of identity-based encryption lends itself to the imple-
mentation of hierarchical constraints and granularity awareness. Therefore, with the help
of hierarchical identity-based encryption (HIBE), we can overcome the shortcomings of
existing client-based access-control architectures for pervasive computing environments.
In this section, we review HIBE and discuss how we extend it to build a solution that
satisfies our requirements.

6.3.1 Hierarchical Identity-Based Encryption

In an IBE scheme, the public key of an individual is an arbitrary string, typically cor-
responding to her ID (e.g., her email address) [111]. The individual gets her private
key from a third party, called a Private Key Generator (PKG). The third party also pro-
vides additional, public parameters required for the cryptographic operations. Boneh and
Franklin [26] present one of the first practical IBE schemes. Based on this work, Gentry
and Silverberg [54] introduce a HIBE scheme. In this scheme, a root PKG gives out pri-
vate keys to sub PKGs, which in turn give out private keys to individuals in their domains
(or further sub PKGs). The public key of an individual corresponds to the IDs associated
with the root PKG, any sub PKGs on the path from the root PKG to the individual, and the
individual. For encrypting messages, additional public parameters are required only from
the root PKG.

The limited success of PKI has lead to the development of simpler public key infras-

144

tructures (e.g,. SPKI [47]), that do not require (hierarchical) certification authorities. In
SPKI, a user’s public key is her identity, and not her name, as certified by an authority.
In our work, we pursue a similar approach. Instead of requiring the existence of a single
hierarchical PKG infrastructure, we let each owner of information have its own PKG. The
owner uses its PKG for managing access rights to its information. An owner can set up a
hierarchical PKG infrastructure, where it controls both the root PKG and any sub PKGs.
In this way, the owner will be able to establish granularity-aware access rights and hierar-
chical constraints (see Section 6.3.3). In the rest of this chapter, we refrain from using the
term “PKG” and talk about owners instead.

Our architecture builds on the HIBE scheme proposed by Gentry and Silverberg. This
scheme supports only a single hierarchy for a root PKG, which is too limiting for our
application scenarios, where we might have multiple hierarchical constraints on access
rights. Therefore, we extend the scheme to support multiple hierarchies.

A HIBE scheme has the advantage that it reduces the amount of required storage and
the complexity of the key management. As we will see in Section 6.3.3, the public key
of information corresponds directly to the name of the information. There is no need for
storing a separate public key (obtained from a conventional cryptosystem such as RSA)
for each information item. Maintaining the mappings from information to a key would
also make access-right management more difficult. We discuss the advantages of a HIBE
scheme in more detail in Section 6.4.1.

6.3.2 Basic Operations

Our solution employs four basic, randomized operations. We discuss these operations in
this section and their application to client-based access control in the next section. Our
operations are based on the operations introduced by Gentry and Silverberg [54], but we
extend them to support multiple hierarchies. We give a detailed discussion, showing the
exact cryptographic steps for each operation, in Appendix A.1. For readability reasons,
we omit some of the parameters of the operations here.

In order to achieve indistinguishability, we assume that all the owners of information
agree on a set of public parameters,params. The basic operations areRoot Setup(),
Extract(), Encrypt(), andDecrypt().

• Root Setup(params) → Q0:
An owner of information runs this operation in order to generate a master secret. In
addition, the operation returns the owner’s public key,Q0.

145

5. Private keys of
nodes, sequences

 of node IDs, and
sub hierarchies

Service

2. Define hierarchies.
4. Extract()

1. Root_Setup()

 11. Proof

13. Information
12. Proof validation

7. Query

9. Challenge

3. Alice’s public key
and hierachies

8. Encrypt()6. Extract()
10. Decrypt()

Bob

Alice

Figure 6.1: Architecture for client-based access control. The service sends a challenge to
Alice. Upon resolving this challenge, Alice sends a proof of access to the service.

• Extract(〈IDi,1, . . . , IDi,ti〉, Si,ti−1, params) → Si,ti with ti ≥ 1:
This operation returns the private key,Si,ti, of a node at levelti in hierarchyi. Unless
ti = 1, this key is derived from the private key of the parent node,Si,ti−1. If ti = 1,
this operation needs to be run by an owner, since it requires the owner’s master
secret.〈IDi,1, . . . , IDi,ti〉 is the sequence of node IDs along the path from the root
node of hierarchyi to the node in question.

• Encrypt(〈ID1,1, . . . , ID1,t1〉, . . . , 〈IDh,1, . . . , IDh,th〉, M, Q0, params) → C: Af-
ter choosing a node in each hierarchy, a service uses this operation to encrypt a
message,M , using the nodes’ public keys. For each of theh hierarchies, the oper-
ation accepts a sequence of node IDs,〈IDi,1, . . . , IDi,ti〉, from the root node to the
chosen node. The operation returns a ciphertext,C.

• Decrypt(〈S1,t1 , . . . , Sh,th〉, C, params) → M :
A client uses this operation to decrypt a ciphertext,C. The operation requires the
private key of each node chosen by the service in its call toEncrypt() and the
ciphertext.

6.3.3 Architecture

If Bob grants Alice an access right to information, he will also give her a personalized
secret. When Alice receives an obscured proof description asking for this information from
a service, this secret will allow her to interpret the description. In the rest of this chapter,
we use the termchallengefor such an obscured proof description. We keep management of

146

January February

...

1 ...

office_hours spare_time

(b) (c)(a)

location_fine

medium

coarse

location_alwayslocation_2004

Figure 6.2: Hierarchies. Bob establishes hierarchies for his location information (a) and
for each constraint (b, c).

the challenges simple by using the name of the information for generating a challenge for
it. In our architecture, a challenge corresponds to a ciphertext/plaintext pair and a secret
corresponds to a tuple of private keys enabling the decryption of ciphertexts. To support
granularity-aware, constrainable challenges and secrets, Bob defines a set of hierarchies.

We give an overview of our client-based access-control architecture, extended with
challenges, in Figure 6.1. There are three entities: an owner of personal information
managing access rights to this information (“Bob), a service offering complex information
that reveals some of the owner’s information, and a client trying to access the complex
information (“Alice). We now discuss the individual steps shown in Figure 6.1 in detail.

Setup. Bob runsRoot Setup() to set up his IBE scheme (1) and to retrieve his public
key. He also establishes multiple hierarchies (2): He first defines a hierarchy resembling
the granularity properties of information about him (information hierarchy). Figure 6.2
(a) gives an example hierarchy for location information. The rule for a hierarchy is that
anyone who has access to information covered by a node should also have access to in-
formation covered by a child node. Bob then establishes another hierarchy for each of the
constraints that he wants to include in his access rights to location information (constraint
hierarchies). Figure 6.2 (b) shows a hierarchy that restricts the lifetime of access rights,
and Figure 6.2 (c) presents a hierarchy for limiting access based on time of the day. (Non-
hierarchical constraints are dealt with similarly; there, the hierarchy has only one level
and lists all possible values.) The root node of each hierarchy includes the name of the
information to ensure that, for example, a constraint granting unlimited access to location
information cannot be used for getting unlimited access to medical information.

Bob then informs the service of his public key and his hierarchies (3). Since none of
this knowledge is confidential, an authenticated communication channel suffices. Instead
of defining his own hierarchies, Bob can exploit predefined hierarchies that the service is

147

already aware of. For example, we expect that there will be a widely accepted and shared
hierarchy for location information.

To allow Bob to issue personalized secrets to clients, we have him personalize the
information hierarchy by adding the identity of a client to the root node of the hierar-
chy. For example, for the hierarchy given in Figure 6.2 (a), the root node becomes “loca-
tion fine Alice”.1 Since this personalization is done in the same way for each client, there
is no need for Bob to submit each personalized information hierarchy to the service. To
avoid collusion attacks between clients, Bob should also personalize each of his constraint
hierarchies.

When issuing an access right to Alice, Bob also gives Alice a personalized secret, cor-
responding to the information in the access right and limited to the same constraints (5). In
his information hierarchy, he chooses the node corresponding to the information to which
he wants Alice to have access (e.g., “medium”). He then walks the path from the root node
to this node. In particular, he keeps a sequence of node IDs and, for each node on the path,
he callsExtract() with the current sequence (e.g.,Extract(〈locationfine Alice〉, null,
params) → S1,1 andExtract(〈locationfine Alice, medium〉, S1,1, params) → S1,2) (4).
Ultimately, this process will return the private key of the chosen node. Similarly, for each
type of constraint, he picks the appropriate node in the corresponding constraint hierarchy
and derives the private key by repeated calls toExtract(). For each hierarchy, Bob will
end up with a private key. The tuple of private keys returned by these calls serve as the
secret.

Bob then gives the secret to Alice, together with the corresponding sequences of node
IDs and the sub-hierarchies rooted in the chosen nodes (5). Transfer of the secret requires
a secret communication channel.

Given the tuple of private keys and the sub-hierarchies from Bob, Alice can derive
additional tuples of private keys for nodes in the sub-hierarchies by (repeatedly) call-
ing Extract() (6). For example, given the private key for〈locationfine Alice, medium〉
and the sub-hierarchy “coarse”, Alice can extract the private key for〈locationfine Alice,
medium, coarse〉. It is possible for Alice to delay this step until she receives a ciphertext.

Access Control. Alice issues a query to the service and fails to submit a proof of ac-
cess (7). Since the requested information (e.g., calendar information) is complex, the
service computes a challenge (8). In particular, the service callsEncrypt() to encrypt a
random plaintext,M . The public keys required for this operation come from the informa-
tion and constraint hierarchies of the owner of the information for which the client needs to
present an access right. The service locates the corresponding node in Bob’s information

1In the actual implementation, Alice is identified by her public key.

148

hierarchy. The service then gathers the IDs of all the nodes along the path from the root
node to this node. For example, if an access right to fine-grained information is required,
the ID sequence is〈locationfine Alice〉. Similarly, for each of the constraint hierarchies,
the service chooses the leaf node that contains the current value of the constraint and gath-
ers the IDs along the path from the root node. The service then callsEncrypt() with the
gathered sequences of node IDs (e.g.,Encrypt(〈locationfine Alice〉,
〈location2005Alice,February, 2〉, 〈locationalwaysAlice, office hours〉, M, Q0, params)).
Note that the public keys used for encryption correspond directly to the node IDs.

The plaintext,M , and the obtained ciphertext,C, serve as the challenge, and the ser-
vice sends them to Alice (9). If the requested information covers multiple individuals,
there will be multiple challenges. Sending a challenge to Alice requires only an authenti-
cated communication channel, since a challenge is personalized to a client and useless to
other clients (without knowing the corresponding personalized secret).

To resolve challenge(M, C), Alice needs to find a tuple of private keys that makes
ciphertextC decrypt to plaintextM . In particular, Alice callsDecrypt() for each of her
(potentially derived) tuples of private keys given to her by Bob (and other individuals) (10).
She stops when the returned plaintext is identical toM . We discuss ways to limit the search
space in Section 6.3.4. If Alice successfully resolves the challenge(s), she will resubmit
the query, together with the required proof of access (11). The service will validate the
proof (12) and return the requested information (13). Steps (11) and (13) require a secret
communication channel.

Discussion.The benefits of our architecture are secrets that are personalized and granu-
larity aware and that support constraints. Because a challenge for information is based on
the name of the information, challenges are simple to manage. As opposed to a previous
approach for dealing with expiration [26], which makes the current date part of an ID, our
approach does not require handing out separate private keys for each possible date.

A client resolves a challenge before submitting the required proof of access to a ser-
vice. However, for some scenarios, this second step can be omitted since resolving the
challenge(s) already gives the client all the information that it is asking for. For example,
if the client asks for the people in a room, the client will require access to all these peo-
ple’s location information. The service thus sends a challenge for each person’s location
information to the client. After resolving these challenges, the client knows about all the
people in the room and hence about all the originally requested information and can skip
submission of a proof of access. An obvious question is why not skip this second step
all the time and stop using proofs of access? In this model, the service would encrypt the
requested information instead of a random plaintext (as suggested by Holt et al. [65]). We
refrain from adapting this model because, as we will see in Section 7.6, the decryption

149

operation is expensive. We view obscured proof-of-access descriptions as a special case.
For most queries, we expect clients to know what they need to deliver a proof of access
for. Therefore, we do not place the burden of decrypting ciphertexts on them for every
request to confidential information.

Security Analysis. The security of the scheme is based on the hardness of the Bilinear
Diffie-Hellman problem. (Please refer to Appendix A.1 for details.) Given this assump-
tion, Gentry and Silverberg [54] show that their HIBE scheme has adaptive chosen ci-
phertext security in the random oracle model. It is straightforward to adapt their proof for
multiple hierarchies. Therefore, attackers cannot decrypt ciphertexts without having the
required decryption key. This property, together with personalization, also makes decryp-
tion keys leaked by clients useless to an attacker (as long as the attacker does not manage
to impersonate one of these clients). Since a tuple of private keys is bound to a particular
type of information, an attacker cannot use this tuple for other information.

Internally, theEncrypt()/Decrypt() operations compute a ciphertext/plaintext by
hashing a computed value into the domain of the plaintext/ciphertext and by XORing
the hashed value with the plaintext/ciphertext. Instead of usingEncrypt()/Decrypt()
on a known plaintext-ciphertext pair, we could omit the hashing and XORing steps and
directly use the computed value as a challenge. This approach relies on the hardness of
the Decision Bilinear Diffie-Hellman problem. (Please refer to Appendix A.1 for details.)
We choose the approach based onEncrypt()/Decrypt since it allows us to use the same
basic routines for obscuring proof descriptions and for encryption-based access control
(see Chapter 7) and since the Bilinear Diffie-Hellman problem is at least as hard as the
Decision Bilinear Diffie-Hellman problem.

When choosing a random plaintext, a service should choose one that is long enough to
make the probability of the client seeing a false positive while resolving the challenge is
small. (For a plaintext of lengthl, the probability of a false positive when using random
tuples of private keys is1/2l.) A false positive will make the client send an irrelevant ac-
cess right to the service. If the access right contained private information, this information
would leak to the service.

Ciphertexts are indistinguishable, meaning that it is not possible to learn from a ci-
phertext which owner’s public key was used for producing this ciphertext. Holt et al. [65]
prove this property for the scenario where all owners of information share the same set of
public parameters, as assumed in our model. The ciphertext can reveal the nature of the in-
formation [2]. However, as explained in Section 6.3.4, a client already has this knowledge.
The ciphertext can also reveal information about the number and depths of the hierarchies
used for encryption. We can address this issue by limiting the number of constraint hierar-
chies and the depth of both information and constraint hierarchies that we allow owners of

150

information to define. If an owner defined fewer constraint hierarchies or hierarchies that
are not as deep as the allowed maximum level, a service could exploit dummy hierarchies
or dummy levels for encryption to guarantee that the obtained ciphertext always contains
the same number of components.

If a service returned multiple challenges, the number of challenges could leak some
information to a client. For example, this number could reveal the number of people a
person is meeting with. We can avoid this leak by making the client prove to the service
that it can access this information before returning challenges to the client. Alternatively,
the service could limit the number of returned challenges and use dummy challenges if the
actual number was smaller than this limit.

6.3.4 Limiting the Search Space

As discussed in the previous section, Alice will have to search through her tuples of private
keys for a tuple that allows decryption. We discuss some optimization strategies for the
search in this section.

We first concentrate on the scenario where the challenge returned by a service covers
only a single individual, that is, Alice needs to find only one tuple of private keys. As
described in Section 6.3.3, when an owner of information gives a tuple of private keys
to Alice granting her access to information under some constraints, Alice can potentially
derive additional tuples from this tuple. We argue that among the original tuple and the
derived tuples, at most one tuple is of relevance for the search. For each constraint hierar-
chy, Alice knows the current value of the constraint and can throw out all the tuples that
do not include the corresponding private key. Alice can also limit the search space for the
information hierarchy since the service can inform Alice of the nature and the granular-
ity of the information for which she needs to resolve a challenge. For example, it is well
known that calendar information is composed of fine-grained location information, but not
of medical information. Therefore, the service can inform Alice that a challenge involves
fine-grained location information. In summary, for all tuples of private keys given to Alice
by a single owner of information and all tuples derivable from these tuples, we expect at
most one tuple to be relevant for a search. Overall, the number of tuples that Alice needs
to search is at most one per owner of information.

If a service returned multiple challenges, Alice will have to locate multiple tuples
of private keys. Therefore, Alice’s search cost is proportional to the number of owners
of information multiplied by the number of challenges. While this sounds expensive,
Bradshaw et al. [29] present an optimization that requires the client to perform the most

151

Personal hierarchy Shared hierarchy
Public values Private keysPublic values Private keys

Conventional cryptosystem 2n 1 n 1
HIBE scheme n 1 0 1

Table 6.1: Key-management demand. For a hierarchy ofn nodes, we show the number of
public values (including public keys) and private keys that an owner of information needs
to define and give to a service and to a client, respectively.

expensive cryptographic operation in this search only once for each owner of information
and not for each combination of an owner and a challenge.

6.4 Discussion

In this section, we compare our HIBE-based approach with alternative solutions. We also
discuss how our solution deals with forwarded access rights, information relationships,
and confidential constraints.

6.4.1 Identity-Based Encryption

IBE simplifies key management. For example, in an email system, IBE allows Bob to
encrypt email to Alice simply by using her email address as public key. Bob does not
need to contact Alice beforehand to acquire a separate public key. We seem to lose this
advantage: Alice needs to inform a service of her hierarchies and her public key. However,
as mentioned in Section 6.3.3, we do not expect each owner of information to define a set
of hierarchies. Instead, there can be a shared set of hierarchies, which a service is aware
of. In addition, we observe that a setup step is also necessary for IBE in an email system:
First, IBE schemes require a set of public parameters for encryption. Bob must acquire
these parameters before he can encrypt email for Alice. Second, Bob should ensure that the
email address he is going to use to encrypt information destined for Alice really belongs
to Alice. He should use this address only if he was given it directly by Alice (or a trusted
third entity) in a setup step.

Instead of using a HIBE scheme, it is possible to make a conventional asymmetric
cryptosystem, such as ElGamal or RSA, hierarchy aware. That is, given the private key of
a node, it is possible to derive the private key of a child node. For ElGamal, we choose a

152

random value for the private key of the root node and build a hash tree rooted at this node.
For example, in a binary tree, the private keys of the left and right child node of a node
with private keyx areH(0||x) andH(1||x), respectively. (H() is a cryptographic hash
function and|| denotes concatenation.) An owner of information builds this tree such that
its structure is identical to the structure of the owner’s information (or constraint) hierar-
chy. In ElGamal, the public key of a node is now computed asy = gx modp, whereg and
p are publicly known andx is the node’s private key. For RSA, Ray et al. [107] present
a hierarchy-aware version. The drawback of these solutions is their increased demand in
key management and transfer. We summarize this demand in Table 6.1. (Both conven-
tional and HIBE schemes typically also require storage and transfer of a constant amount
of additional information, which is not shown in the table.) If an owner of information
defined a set of hierarchies, the owner will have to transfer at least the ID of each node to
a service in order to inform the service of the node’s meaning, regardless of the employed
hierarchical cryptosystem. For a HIBE scheme, only this ID is required. For a conven-
tional cryptosystem, a separate public key needs to be generated and transferred for each
node. If an owner of information uses a shared information or constraint hierarchy and
employs a conventional cryptosystem, it will still have to generate a set of public keys for
all the nodes in the shared hierarchy and submit these values to individual information ser-
vices. There is no such need for a HIBE scheme. Finally, whereas it is possible to achieve
indistinguishability with an ElGamal-based solution, it is an open problem whether this is
possible for an RSA-based solution [33].

While not being part of our security model, a deployed system needs to be able to deal
with key revocation, attackers learning private keys or, worse, the compromise of an owner
of information’s master secret. We can exploit mechanisms proposed earlier [26, 114] for
this purpose, that is, adding a salt to the naming scheme, including a time-to-live value
with configuration information, and storing secrets in a distributed way. When compared
with conventional asymmetric cryptosystems, key revocation becomes easier in our HIBE
scheme. In particular, an owner of information can associate the same salt with the root
node of each of the owner’s hierarchies. Upon key revocation, in terms of public values,
only this salt needs to be re-distributed. For a conventional cryptosystem, the public key
associated with each node needs to be redistributed.

Our access-control mechanism is also suitable to environments other than pervasive
computing. The mechanism targets scenarios where multiple information services, run by
different organizations, need to distribute the same kind of information to the same set of
clients. Another deployment option is in the context of medical information, where multi-
ple hospitals, run by different HMOs, grant the same researchers access to the same kind
of confidential statistical information gathered in a hospital. Moreover, an extended ver-

153

sion of our solution allows for secret handshakes [12] with flexible, expiring membership
credentials. In a secret handshake, members of the same group authenticate each other se-
cretly such that non-members cannot recognize group members and non-members cannot
perform the handshake. Traditional solutions [12, 33] require explicit revocation of mem-
bership certificates or have limited flexibility in terms of expiration (e.g., all credentials
are valid for exactly one day).

As we will see in Section 7.6, our proposed HIBE scheme can be expensive in terms of
performance. This cost could become a problem in a pervasive computing environment,
where clients might employ computationally weak devices for accessing information (e.g.,
a cellphone). A common architecture for such environments is to have agents perform
tasks on behalf of clients [38, 51]. We could have this agent decrypt information for its
client. For performance and availability reasons, it makes sense to run this agent on a more
powerful processing platform and to run only a lightweight proxy on a client’s personal
device.

6.4.2 Forwarded Access Rights

Our access-control architecture introduced in Chapter 2 supports forwarding of access
rights, that is, a client that is in the possession of an access right can forward this access
right to other entities by issuing additional access rights (i.e., digital certificates). How-
ever, our solution for obscured proof-of-access descriptions does not support forwarding,
that is, a client that is given a tuple of private keys by an owner of information, together
with an access right, cannot forward this tuple to other entities. In particular, giving a copy
of the tuple to other entities does not help these entities since tuples are personalized. Al-
ternatively, the client cannot generate tuples specific to these entities since this generation
requires the master secret created by the owner of the information, which is not available
to the client.

This limitation seems difficult to overcome, since there are conflicting interests. On
the one hand, we want the secret knowledge that is given by an owner of information to a
client to be personalized so that leakage of this knowledge does not affect other clients. On
the other hand, we want a client to be able to exploit its secret knowledge for generating
new secret knowledge specific to other clients.

In our current solution, there are two options for dealing with forwarded access rights.
The first option is to give up personalization, that is, all clients authorized to access a
particular type of information are given the same secret. This approach allows clients
to copy this secret when forwarding an access right. As mentioned in Section 6.2, the

154

personal

location activity medical

Figure 6.3: Bundling-based information hierarchy. The hierarchy represents bundling-
based information relationships.

drawback of this approach is that all clients need to be issued a new secret when the
secret leaks. The second option is to have a client that is granted a forwarded access right
submit all potentially relevant access rights to a service. As mentioned in Section 6.1, this
approach has privacy and bandwidth issues.

6.4.3 Information Relationships

As mentioned in Section 3.3.3, granularity-based information relationships are a special
case of bundling-based relationships. Since information hierarchies represent granularity
properties of information and thus granularity-based relationships, it looks possible to also
model bundling-based information relationships with information hierarchies. For exam-
ple, Figure 6.3 illustrates how an information hierarchy can represent bundling-based in-
formation relationships, where an individual’s location, activity, and medical information
are bundled in her personal information. While it is possible to express bundling-based
information relationships with information hierarchies, there are three potential obstacles
that we need to overcome.

First, we must ensure that the underlying HIBE scheme is secure against collusion.
For example, for the information hierarchy given in Figure 6.3, assume that Alice has the
tuple of private keys for (〈personalAlice, location〉, 〈personal2005Alice, January〉) and
(〈personalAlice, medical〉, 〈personal2005Alice, February〉). Given the two tuples, Al-
ice should not be able to determine the tuple of private keys for (〈personalAlice, location〉,
〈personal2005Alice, February〉) and (〈personalAlice, medical〉, 〈personal2005, January〉).
Our HIBE scheme is not secure against collusion. Yao et al. [133] propose a collusion-
resistant HIBE scheme, which we could also adopt. However, the complexity of the
Encrypt() and Decrypt() operations in their scheme isO(nm), wheren is the depth
of a hierarchy andm is the number of hierarchies. As we will see in Section 7.6, the
complexity of the operations in our scheme isO(mn).

Second, information hierarchies support only tree-based hierarchies, that is, informa-

155

...

CMU

...

...

Wean HallHamburg Hall

1st Floor 8th Floor

...

8220

Figure 6.4: Location hierarchy. Hierarchy for location-dependent access rights.

tion can be bundled only in one type of information. For example, it is not possible to
bundle location information in more than one other type of information. Tree-based hi-
erarchies could be sufficient for many individuals. Alternatively, if information needs to
be bundled in multiple types of information, we can establish multiple information hier-
archies for the bundled information. A service would then issue a separate challenge for
each information hierarchy.

Third, information hierarchies assume that the information in all nodes of a hierarchy
is owned by the same entity. This limitation is probably not severe for many individuals.

6.4.4 Confidential Constraints

We have assumed that the constraints on an access right involve non-confidential infor-
mation, that is, information whose current value is publicly known. Let us now look at
constraints that involve confidential information.

One such constraint is the location of a client. For example, Bob constrains an access
right granted to Alice based on her location. Ideally, we can treat confidential constraints in
the same way as non-confidential constraints. For example, in order to support a constraint
based on Alice’s location, we could define another constraint hierarchy corresponding to
Alice’s possible locations, such as the one shown in Figure 6.4, and treat this hierarchy in
the same way as the information and constraint hierarchies discussed so far. Representing
the constraint in a hierarchy allows Bob to easily grant an access right that is constrained
based on an entire building/area, without having to enumerate each place contained in the
building/area in the constraint.

However, this approach is insufficient due to the following reasons: First, Alice should
be able to perform a decryption operation only if she actually is at the listed location.

156

Though Bob indicates this location in his access right granted to Alice, he must not give
the corresponding private key to Alice when issuing the access right. Instead, Alice should
be given this key only once she actually is at this location, potentially by a third entity, as
determined by Bob. Second, in the given approach, Alice’s decryption key for a partic-
ular location remains identical over time. However, Alice’s location changes over time.
Correspondingly, the decryption key for a particular location should change such that Al-
ice cannot re-use the key once she leaves this location (or, at most, she can re-use it only
within a short time frame). Third, the service uses the current value of the constraint (i.e.,
Alice’s current location) as a public key when encrypting a plaintext. However, this value
is not public, and the service might not know it. In summary, we cannot treat confidential
constraints in the same way as non-confidential constraints.

As an alternative, it looks possible to design a solution based on an “inverted” location
hierarchy. In particular, in this solution, the service knows Alice’s access right and uses the
corresponding public key for encrypting a plaintext. For example, if Alice’s access right is
constrained to her being in “CMU/Wean Hall”, the service could use this value as a public
key. If Alice is at any location in Wean Hall (e.g., “CMU/Wean Hall/8th Floor/8220”), she
is given the private key for this location. The approach should then allow Alice to derive
the private key for “CMU/Wean Hall”. However, this approach has the drawback that it
requires the service to know about each individual’s access right.

The two discussed solutions fail because they assume that the service is aware of the
current value or the nature of a constraint in Alice’s access right. Instead, we now propose
a solution in which the service is oblivious to these two items.

Let us assume that Bob hands out access rights to his location information and that
he wants to constrain Alice’s access based on her location. He first decides about the
entity that is responsible for guaranteeing satisfaction of the constraint. In our example,
Dave is this entity. Bob then informs Dave of the nature of the constraint. Note that
this specification can be client-specific, that is, Bob could require Alice to be at a location
different from the location required for another client. In addition, Bob informs the service
of Dave’s public key,QDave

0 , and tells the service how long he expects a constraint to
remain valid. Finally, Bob lets Alice know about the constraint specification.

When Alice contacts the service, the service uses an extended version of theEncrypt()
operation, which supports multiple individuals’ public keys, to encrypt a random plaintext.
For this encryption, the service exploits the already discussed public keys for nodes in
Bob’s information and constraint hierarchies, where the constraint hierarchies cover non-
confidential constraints. In addition, the service exploits a public key covering the con-
fidential constraint, where the corresponding private key is generated by Dave. Namely,
this public key is a concatenation of the type of information in the client’s access right

157

(”location”), the ID of the client (“Alice”), the ID of the owner of the information in the
access right (“Bob”), and the time frame during which the constraint is expected to re-
main valid (e.g., “2005/05/25/14:00:00 EDT - 2005/05/25/14:05:00 EDT”). Note that the
public key does not list the nature of the constraint or the required value; we assume that
Dave provides only one constraint per type of information, per client, and per owner. The
service then uses these public keys to executeEncrypt(). For example, the service calls
Encrypt(〈locationfine Alice〉, 〈location2005Alice,February, 2〉,
〈locationalwaysAlice,office hours〉,
locationAlice Bob 2005/05/25/14:00:00EDT-2005/05/25/14:05:00EDT, M, QBob

0 , QDave
0 ,

params).

In order to decrypt the ciphertext, Alice needs to retrieve a private key from Dave. Dave
maintains a mapping from the type of information in an access right (“location”), the ID
of a client (“Alice”), and the ID of the owner of the information in the access right (“Bob”)
to a constraint specification listed in the access right. After looking up this constraint
specification, Dave needs to ensure that no information leaks to Bob or to Alice, that is,
Bob and Alice need to have access to the constraint information. Then, Dave validates
that the constraint is satisfied and makes sure that Alice is at the location required by Bob.
If this validation is successful, Dave will compute the corresponding private key (e.g.,
Extract(locationAlice Bob 2005/05/25/14:00:00EDT-2005/05/25/14:05:00EDT, sDave

0 ,
params), wheresDave

0 is Dave’s master secret, and he will give the key to Alice. This
private key (and private keys obtained from Bob) will allow Alice to decrypt the ciphertext
received from the service.

6.5 Prototype Implementation

Identity-based cryptography has been used for different types of applications, such as
searchable audit logs [126] or secure email and IPsec [114]. All these applications, includ-
ing our proposed one, exploit the Boneh and Franklin IBE scheme [26]. While there are
other schemes (e.g., by Boneh and Boyen [24], Boneh et al. [25], Cocks [41], Waters [125],
and Yao et al. [133]), we choose this scheme because of the existence of publicly available
implementations [56, 89].

Because the Aura environment is mostly Java, we implemented our HIBE scheme in
Java. We ported a C implementation of IBE [56] to Java and added support for hierarchies.
We employ a hybrid encryption scheme, that is, we symmetrically encrypt information
with a session key and encrypt only this session key withEncrypt().

We also implemented a calendar service that generates obscured proof descriptions.

158

Bob provides the public parameters of his identity-based cryptographic scheme and his
hierarchies in SPKI/SDSI “auto-certificates” [48], whose purpose is to make information
about their issuer available in an authentic way. Bob also uses auto-certificates for handing
out tuples of private keys. There is a command line tool for issuing certificates, setting up
IBE schemes, and extracting private keys.

We use SSL for communication between entities, which gives us authentication of
peers and confidentiality and integrity of the transmitted data. Strictly speaking, we do
not require confidentiality of a challenge in client-based access control. Server authenti-
cation and query confidentiality and integrity are required to deal with attackers listening,
modifying, or injecting traffic. We require data integrity since our IBE implementation is
only semantically secure, but does not provide chosen-ciphertext security. Finally, there
has to be client authentication. We decided against implementing the required features,
together with IBE, in a protocol of our own, since, as history has shown, correctly imple-
menting protocols is hard. SSL has been well researched, and the overhead caused by the
redundant, symmetric encryption is low.

We provide an evaluation of our implementation in Section 7.6.

6.6 Related Work

There are several areas of research that are relevant to our work. Let us review this research
and discuss whether and how we can exploit it for obscured proof-of-access descriptions.

Holt et al. [65] introduceHidden Credentials, where a service requires a client to be
in the possession of a set of credentials in order to access confidential information, but
the service does not make the client reveal these credentials. The solution also supports
confidential access policies, where the service keeps its access policy listing the required
credentials secret from the client. Similar to our work, Holt et al.’s work is based on the
Boneh and Franklin IBE scheme. The service encrypts its confidential information, where
the public key corresponds to the string composed of the content of the required credential
and the identity of the client. If multiple credentials are required, an item is encrypted with
each credential using onion encryption. Alternatively, if there is a choice in credentials, an
item is encrypted multiple times, once for each possible credential. A client’s credential is
specific to the client and corresponds to an IBE private key. If the service’s access policy
is confidential, the service does not inform the client of the credential(s) required for de-
cryption. The client then needs to find the right credential(s) in its set. In our architecture,
due to reasons outlined in Section 6.3.3, we do not have a service encrypt information
for client-based access control. Holt et al.’s and our architecture were developed indepen-

159

dently from each other. Holt et al. do not investigate constraints on credentials (i.e., access
rights) and expiration of credentials.

Bradshaw et al. [29] extend Holt et al.’s architecture to support complex access poli-
cies, expressed as monotonic boolean functions, such that the structure of a policy remains
concealed from an unauthorized client. They apply a secret splitting system and split a se-
cret according to the structure of the policy. To prevent leakage of information about the
number of required credentials, Bradshaw et al. use dummy shares and have a service
return a constant number of (encrypted) secret shares. For obscured proof-of-access de-
scriptions, the structure of an obscured description is known to the client (i.e., it is a series
of AND operations) and we do not need to hide the structure.

Frikken et al. [50] also extend Holt et al.’s architecture to conceal complex policies
from a client. In addition, their solution prevents a client from learning which of the
client’s credentials gained the client access. Frikken et al. only outline their solution and
do not provide any details.

Persiano and Visconti [103] present an extension of SSL called “Secure and Private
Socket Layer (SPSL)”. The extension allows a service to present a set of X.509 certificates
to a client. The client will be granted access if it knows the private key associated with
at least one of the certificates, without revealing which one. For obscured proof-of-access
descriptions, there is no choice in the permissible certificates.

Balfanz et al. [12] introduce the concept ofsecret handshakes, which allows two enti-
ties to authenticate each other only if both entities are members of the same group. Non-
members cannot recognize such a handshake and cannot perform the handshake. An en-
tity can require that the other entity has a particular role in the group for the handshake
to succeed. Balfanz et al. present an implementation based on pairing-based cryptogra-
phy. Castelluccia et al. [33] present an implementation based on the Computational Diffie-
Hellmann assumption. The presented solutions assume that both entities have membership
credentials issued by the same organization. Our architecture (and Holt et al.’s architec-
ture) can be easily extended to support secret handshakes for scenarios where the two en-
tities require each other to be members of different groups, that is, where the two entities
have membership credentials issued by different organizations.

Li et al. [86] proposeOblivious Signature-Based Envelope (OSBE). OSBE assumes
that a client and a service agree on the content of a credential required by the client for
accessing confidential information provided by the service and on the centralized entity
issuing such credentials. (For example, the service informs the client of the content and
of the authority at the beginning of an interaction.) The service then encrypts confidential
information such that the client can decrypt the ciphertext only if the client has a signature

160

for the required credential, as issued by the centralized entity. Li et al. present imple-
mentations based on RSA and identity-based signatures. In our architecture, the service
cannot inform the client of the content of the required credential. Also, the two parties do
not agree on a centralized entity.

Brands [30] introduces several restrictive blind issuing protocols and showing proto-
cols with selective disclosure for digital certificates. The protocols allow a client that is
issued a certificate by a centralized entity to selectively reveal some of the client’s proper-
ties listed in the certificate to a service. That is, the client does not have to reveal the entire
certificate to the service, which prevents the service from learning unnecessary properties
about the client and from tracking the client. Brands presents implementations based on
RSA and discrete logarithms. Chaum [35] introduces a pseudonym system, where a client
can transform a credential such that the client can show the credential to a service under a
pseudonym. The solution also supports selective disclosure of the client’s properties listed
in the credential. Our solution does not require the client to reveal credentials to the ser-
vice. Similar to OSBE, the two alternative solutions assume that the service can inform
the client of the content of the required certificate/credential and that the two parties agree
on a centralized entity. These assumptions do not hold in our scenario.

Automated trust negotiation [130] explores the establishment of trust between strangers
based on potentially sensitive access policies and credentials. Seamons et al. [110] have
a service represent an access policy as a directed, acyclic graph, where nodes represent
parts of an access policy and edges determine the order in which the access policy can
be revealed to a client. For access control, the service traverses the graph and tells the
client in a stepwise-fashion about the contents of a node and what credential the client
needs to present next. Yu and Winslett [134] extend Seamons et al.’s approach by sep-
arating policy satisfaction from policy disclosure, that is, the conditions under which the
contents of a node can be revealed are different from the conditions for its satisfaction. For
both approaches, the client can also build policy graphs, defining its willingness to reveal
a credential to the service. For this case, Winsborough and Li [129] observe that if the
client asks the service for a credential, the client probably has the credential requested by
the service, which could be an information leak. To avoid this leak, the authors suggest
that the client’s reaction should be independent of the fact of whether it actually has the
credential. The client defines this reaction in an “Ack policy”. It is possible to look at
obscured proof-of-access descriptions as an instance of automated trust negotiation. We
assume that a client’s access rights are not confidential, so there is no need for Ack poli-
cies. Yu and Winslett propose two strategies for exchanging access rights; neither of them
is satisfactory for our scenario. In the first strategy, the client transmits all its access rights
to the service, even if they are not required. This strategy has bandwidth issues. In addi-

161

tion, since it can lead to the disclosure of irrelevant access rights, it has privacy issues. In
the second strategy, the client transmits only access rights that the service explicitly asks
for by revealing (parts of) its access policy. However, this strategy fails if access rights
whose corresponding access policy the service cannot reveal are required, as it is the case
for obscured proof descriptions.

Keys with a limited lifetime have been proposed for IBE before [26]. The proposal
makes the lifetime of a key an explicit part of the key’s ID. It assumes that all keys have
the same lifetime (e.g, all keys are valid for a year). In our approach, different keys can
have different lifetimes.

6.7 Summary

When running client-based access control to confidential complex information, we need to
avoid the situation where a client can infer confidential information from the description of
a required proof of access. We showed how hierarchical identity-based encryption can be
employed to obscure this description such that only a client that is authorized to access the
information listed in the description can interpret the description. Our approach supports
information of different granularity levels and constraints on access rights. We incorpo-
rated our proposed solution into a client-based access-control architecture for pervasive
computing.

A weakness of our architecture is that all the owners of information need to share the
same parameters for their HIBE schemes, which could be difficult to achieve. A topic
for further investigation is whether we can weaken this assumption without significantly
compromising on security. Furthermore, our architecture does not allow secrets required
for understanding an obscured proof-of-access description to be forwarded together with
a forwarded access right.

In the next chapter, we look at an alternative approach to client-based access control.
Namely, we present an encryption-based access-control architecture for pervasive com-
puting. Similar to our solution for obscured proof-of-access descriptions, this architecture
exploits hierarchical identity-based encryption. We will also provide a measurement-based
evaluation of this approach.

162

Chapter 7

Encryption-Based Access Control

In this thesis, we have concentrated on client-based access control, where a client needs
to prove to a service that the client is authorized to access the requested information.
An alternative option is encryption-based access control. In such a scheme, a service
provides confidential information to any client, but the service encrypts the information
before handing it over to a client. Only clients authorized to access the information have
the required decryption key. This approach is attractive in scenarios where there are lots
of similar queries to a service since it shields the service from having to run client-specific
access control. Instead, the service can encrypt an information item once and use the
ciphertext for answering multiple queries for this item. In this chapter, we present an
encryption-based access-control architecture for pervasive computing.

7.1 Overview

In Section 1.1, we outlined four challenges for access control in pervasive computing. Let
us discuss how we can address these challenges in an encryption-based access-control ar-
chitecture. First, to keep key management simple, we have a client use only one decryption
key for each type of information, even if the same type of information is offered by multi-
ple services, potentially run by different organizations. Second, for complex information,
such as a calendar entry, a service offering this information encrypts the information such
that a client requires multiple decryption keys, one for each type of revealed information.
Third, in order to limit the influence of intruders into a gateway, a gateway can potentially
perform its derivation functionality on encrypted information, as outlined in Section 4.9.
In this way, a gateway does not need to be given a decryption key. Fourth, when infor-

163

mation is accessible only if a constraint is satisfied, we have each value of the constraint
require a separate decryption key. Constraints can make key management difficult.

In this chapter, we present an encryption-based access-control architecture for perva-
sive computing that supports constraints and multiple services offering the same informa-
tion and that keeps key management simple [62]. In particular, our contributions include

• a novel application of hierarchical identity-based encryption in the context of encryption-
based access control,

• a prototype implementation and an evaluation of this implementation.

We start by listing the requirements that encryption-based access control needs to fulfill
(Section 7.2). We then present our solution based on hierarchical identity-based encryption
(Section 7.3). Next, we discuss the scenario where a service returns complex information
(Section 7.4). We have implemented our solution in a pervasive computing environment
(Section 7.5). Finally, we provide an evaluation and discuss the relative strengths and
weaknesses of our example implementation (Section 7.6).

7.2 Requirements

In this section, we discuss the requirements that we require our solution for encryption-
based access control to have. The requirements are similar to the requirements we placed
on obscured proof-of-access descriptions in client-based access control in Section 6.2.

Indistinguishability. If the information requested by a client is complex, a service cannot
inform the client which keys to use for decryption, else there could be an information
leak. This observation also calls for indistinguishability, that is, the ciphertext must
not reveal any knowledge about the owner of the encrypted information.

Constraints. Each possible value of a constraint must require a separate key for de-
crypting encrypted information that should be accessible only under the given con-
straint/value combination. For example, a key that allows decryption on January
1 must not allow decryption on January 2. To make key management simple, we
want a key scheme that supports hierarchical constraints. For example, given the
decryption key for January, we can derive the key for January 1, January 2,...

Granularity awareness. To simplify key management, the decryption key for coarse-
grained information should be derivable from the decryption key for fine-grained
information.

164

sub hierarchies

nodes, sequences
5. Private keys of

 of node IDs, and

Service

 Information

2. Define hierarchies.
4. Extract()

1. Root_Setup()

10. Decrypt()
6. Extract()

7. Query

8. Encrypt()
9. Encrypted

and hierarchies
3. Alice’s public key

Bob

Alice

Figure 7.1: Architecture for encryption-based access control. Bob sets up his IBE scheme
and hierarchies, informs the service, and grants access to Alice. Alice issues a query.

Asymmetry. Decryption keys should be service independent, that is, if multiple services
offer the same information, this information will be decryptable with the same de-
cryption key. Therefore, in a symmetric cryptosystem, a service encrypting infor-
mation would be able to access the same information offered by some other service.
For example, a cellphone service offering Alice’s cellphone-based location infor-
mation would be able to access her Wi-Fi–based location information as offered by
another service. We can avoid this problem by using an asymmetric cryptosystem.

We do not require personalization for encryption-based access control since encryption-
based access control is client independent by design.

7.3 Encryption-Based Access Control

Similar to obscured proof-of-access descriptions, our architecture for encryption-based
access control is based on hierarchical identity-based encryption (HIBE). For the rest of
this chapter, we assume familiarity with HIBE, as presented in Section 6.3.1, and our
architecture for obscured proof-of-access descriptions, as described in Section 6.3.3.

Figure 7.1 gives an overview of our encryption-based access-control architecture; the
architecture is similar to the architecture for obscured proof-of-access descriptions given
in Figure 6.1. We now review the changes. For illustration purposes, we assume that the
service provides location information.

Setup.There is no need for Bob to personalize his information and constraint hierarchies,
since encryption-based access control is not client specific.

165

Access Control. When queried by Alice for information about Bob (7), the service en-
crypts the information (8) and returns the encrypted information to Alice (9). Namely,
the service splits up the information based on its granularity properties and encrypts each
piece separately. For example, the information “CMU Wean Hall 8220” is split up into
“CMU”, “Wean Hall”, and “8220”. Then, for each piece, the service locates the node
in Bob’s information hierarchy that describes the piece and gathers the IDs of all the
nodes along the path from the root node to this node. In our example, the ID sequences
are〈locationfine, medium, coarse〉, 〈locationfine, medium〉, and〈locationfine〉, respec-
tively. Similarly, for each of the constraint hierarchies, the service chooses the leaf node
that contains the current value of the constraint and gathers the IDs along the path from the
root node. The service then callsEncrypt() with the gathered sequences of node IDs (e.g.,
Encrypt(〈locationfine, medium, coarse〉, 〈location2005, February, 2〉, 〈locationalways,
office hours〉, “CMU” , Q0, params)). Alice decrypts the received ciphertexts by calling
Decrypt() with the required tuple of private keys (10) for each ciphertext. She can decrypt
a ciphertext only if the encrypted information is of a granularity that she has access to.

Discussion.Our solution fulfills the requirements of indistinguishability (as explained in
Section 6.3.3) and asymmetry and supports granularities and multiple, hierarchical con-
straints. Using the identification string of information or of a constraint directly as its
public key drastically simplifies key management.

Security Analysis.As mentioned in Section 7.3, the security of the scheme is based on the
hardness of the Bilinear Diffie-Hellman problem. The scheme is not secure against collu-
sion. For example, for the hierarchies given in Figure 6.2, assume that Alice has the tuple
of private keys for (〈locationfine〉, 〈location2005〉, 〈locationalways, officehours〉) and
that Carol has the tuple for (〈locationfine〉, 〈location2005, January〉, 〈locationalways〉).
If Alice and Carol colluded, they could determine the tuple for (〈locationfine〉, 〈location2005〉,
〈locationalways〉). Yao et al. [133] propose a collusion-resistant HIBE scheme. However,
the complexity of theEncrypt() andDecrypt() operations in their scheme isO(nm),
wheren is the depth of a hierarchy andm is the number of hierarchies. As we will see in
Section 7.6, the complexity of the operations in our scheme isO(mn).

7.4 Complex Information

If the information offered by a service is complex, decryption of the corresponding cipher-
text should require multiple decryption keys, one for each type of revealed information.
Let us discuss two options to deal with this scenario.

First, a service determines an ordered set of encryption keys, one for each type of

166

revealed information, and computes a single encryption key out of them, which it then uses
for encrypting the information. (We discuss some approaches for computing this single
encryption key, specific to IBE, in Section 7.7.) Similarly, a client picks the corresponding
set of decryption keys and computes a single decryption key out of them, which it then uses
for decryption. This solution has the advantage that there is always exactly one encryption
operation. If there were multiple such operations, a client might be able to learn about their
number and deduce confidential information (see below). The approach has the drawback
that it does not scale well for the decryption of complex information, where a client does
not know the required decryption keys. Namely, the client would have to try all possible
combinations of its keys. For example, if a client hadn decryption keys, up to2n − 1
decryption attempts would be required.

Second, a service determines a set of encryption keys and performs onion encryption,
that is, it randomly removes a key from the set and uses the key to encrypt the informa-
tion item or the ciphertext resulting from the previous encryption. (Key removal must be
random, else information could leak.) This approach has the drawback that it can leak
information about the number of applied encryption operations from the final ciphertext.
Namely, since the encryption operation is randomized, its application results in a cipher-
text longer than the plaintext or ciphertext used as input to the operation. This information
leak can be avoided by limiting the maximum number of encryption operations and using
a dummy key if the actual number of keys was smaller than this limit. In this way, the
final ciphertext will always have the same length. The approach has the advantage that
it scales better than the first approach when it comes to locating the required set of keys
for decrypting complex information. Givenn decryption keys in the client’s pool of keys
and at mostm of them are required for decryption, a client requires at most

∑m−1
i=0 (n− i)

decryption attempts. In our implementation, we choose this approach.

7.5 Prototype Implementation

For encryption-based access control, we re-use the HIBE implementation used for obscur-
ing proof-of access descriptions in client-based access control, as described in Section 6.5.

We also implemented several location services, each exploiting a different approach
for locating people. They run either client-based or encryption-based access control. The
encryption-based versions always use HIBE. While it is possible to switch to a different
asymmetric cryptosystem if, for example, no constraints are used or information is not
granularity aware, key management would become difficult.

Due to the reasons outlined in Section 6.5, we use SSL (without client authentication)

167

for securing the communication between a client and a service.

7.6 Evaluation

In our evaluation, we concentrate on encryption-based access control. For obscured proof-
of-access descriptions, the overall cost for access control is larger than for encryption-
based access control. The performance of the HIBE operations is similar for both cases.
However, client-based access control requires two round trips, client authentication, and
validation of the proof of access.

We run our experiments on a Pentium IV/2.5 GHz with 1.5 GB of memory, Linux
2.4.20, and Java 1.4.2. An experiment consists of ten runs. We report both the mean and
the standard deviation (in parentheses).

We have a client contact a service that provides encrypted people-location information,
which is split into three levels of granularity and encrypted using a three-level informa-
tion hierarchy. There are no constraints. We look only at the case where information
about a single individual is provided. In addition, we assume that the client knows which
decryption key to use. It takes 1091 ms (42 ms) for the client to retrieve and decrypt the in-
formation. Let us examine this cost in more detail. (Detailed results are in Appendix A.3.)
For the service, there is a cost of 25 ms (2 ms) for anEncrypt() operation that exploits
only the root level of a hierarchy. Our service has to perform threeEncrypt() operations.
In addition, there is a cost of 14 ms (1 ms) per additional level used in anEncrypt()
operation (i.e.,3 ∗ 14 ms in our experiment). Therefore, the overall cost of encryption is
about 117 ms. The overall processing time of the service is 253 ms (31 ms); 46% of the
cost is due to encryption. The rest of the cost is caused by fingering a person’s desktop
computer in order to locate her and by (de)marshalling of the request and the response.
For the client, there is a cost of 136 ms (2 ms) per level used in aDecrypt() operation.
Our client runs three such operations, operating at 1, 2, or 3 levels. Therefore, the overall
decryption cost is about 816 ms or 75% of the overall processing time.

In our second experiment, we investigate the influence of the number of hierarchies
on encryption and decryption time. We encrypt and decrypt a random message using a
variable number of hierarchies, whereas we exploit all the levels in each hierarchy. Similar
to the first experiment, the first hierarchy has three levels. All the additional hierarchies
have two levels. As shown in Figure 7.2, the cost increases linearly with the number of
hierarchies. This observation is consistent with the characteristics of theEncrypt() and
Decrypt() operations (see Appendix A.3). Taking these characteristics into account, if
there arem hierarchies havingni levels(1 ≤ i ≤ m), the cost of anEncrypt() operation

168

1 2 3
0

20

40

60

80

100

Number of hierarchies

E
nc

ry
pt

io
n

tim
e

[m
s]

Java (measured)
C (predicted)

(a)

1 2 3
0

200

400

600

800

1000

Number of hierarchies

D
ec

ry
pt

io
n

tim
e

[m
s]

Java (measured)
C (predicted)

(b)

Figure 7.2: Performance of encryption/decryption. We encrypt/decrypt a message using a
variable number of two-level hierarchies, whereas the first hierarchy has three levels. (The
two graphs are differently scaled.)

exploiting all the levels in each hierarchy is25 ms+
∑m

i=1(ni−1)∗14 ms. For aDecrypt()
operation, the cost is

∑m
i=1 ni ∗ 136 ms.

The performance numbers heavily depend on the underlying implementation. Our
implementation uses Java’s standard mathematical package for its cryptographic routines.
While we currently do not have a C-based implementation of our HIBE scheme, there
is a more optimized, publicly available C-based implementation of the underlying IBE
scheme [89]. Since the former scheme exploits the same basic mathematical routines
as the latter one, we can predict the performance of a C-based implementation of our
HIBE scheme based on this implementation. Figure 7.2 shows our predictions. (More
detailed results are in Appendix A.3). Formally, if there arem hierarchies havingni levels
(1 ≤ i ≤ m), the cost of anEncrypt() operation exploiting all the levels in each hierarchy
is 6 ms+

∑m
i=1(ni − 1) ∗ 4 ms. For aDecrypt() operation, the cost is

∑m
i=1 ni ∗ 29 ms.

In summary, the performance of a C-based, more optimized implementation would be at
least 3.5 (encryption) or 4.5 (decryption) times better.

We could also improve performance by using a different HIBE scheme. Currently,
we are exploiting an extension of Gentry and Silverberg’s HIBE scheme [54], which, at
the time of the implementation of our architecture, was the most secure and efficient op-
tion. Recently, Boneh et al. [25] proposed a HIBE scheme that has constant decryption
performance for a single hierarchy, regardless of the number of levels, and that has the

169

same encryption performance as Gentry and Silverberg’s scheme. In addition, a ciphertext
in Boneh et al.’s scheme does not leak any information about the number of levels in a
hierarchy that were used for encryption.

The presented results allow us to judge the relative benefit, performance-wise, of
client-based and encryption-based access control. In our implementation of client-based
access control, it takes a service about 2 ms to validate the 1024 bit RSA signature of a
SPKI/SDSI certificate. Assuming a single-level information hierarchy and no constraint
hierarchies, it takes the service 25 ms to encrypt a piece of information. However, this op-
eration does not need to be executed for every client, the service can re-use an encrypted
piece of information to answer requests from multiple clients. Therefore, it pays off for
the service to use encryption-based access control if there are more than 12 requests for
information during the lifetime of the information. If there are constraints on access rights,
this number will become correspondingly larger.

7.7 Related Work

There are several areas of research that are relevant to our work. In particular, let us
review research in the areas of access control in a hierarchy, broadcast encryption, secure
multicast, and more flexible IBE schemes.

There has been previous work about access control in a hierarchy, where information
items are classified into partially ordered security classes depending on their sensitivity
and users are assigned to classes depending on their clearance. Each class has an en-
cryption (decryption) key, which is used for encrypting (decrypting) information in the
class. Given the encryption (decryption) key for a class, it is possible to derive the en-
cryption (decryption) key for a class of a lower security level. None of the proposed hier-
archical architectures fulfills our requirements of asymmetry and easy key management:
Akl and Taylor [4], Harn and Yin [59], and Tzeng [122] present symmetric architectures,
Sandhu [109] and Zheng et al. [135] propose symmetric architectures exploiting strings for
key generation, and Ray et al. [107] discuss an asymmetric approach that does not exploit
strings for key generation. Our approach supports only tree-based hierarchies. However,
tree-based hierarchies are sufficient for expressing granularity-aware decryption keys and
hierarchical constraints on them. Similar to our architecture, Briscoe [31] uses a hierarchy
for managing time-based access.

Broadcast encryption [49] is similar to encryption-based access control, as explored in
this chapter. In broadcast encryption, a service encrypts a message for a subset of clients
who are listening on a broadcast channel. A client in this subset can decrypt the broadcast,

170

whereas (colluding) clients outside of the subset cannot. Since information is broadcast
to clients with potentially limited storage capabilities, research in this area (e.g., Boneh
et al. [27]) is mainly concerned with limiting the size of ciphertexts and of private keys.
In our scenario, there is no broadcasting of information. We assume that clients have
sufficient storage capabilities. Alternatively, clients can offload the storage of decryption
keys and potentially the decryption of ciphertexts to more powerful proxies. Broadcast
encryption assumes that a client either has or does not have a decryption key; there are no
constraints on the validity of a decryption key.

In broadcast encryption, it is the responsibility of a service to deal with joining or
leaving clients. In secure multicast [131, 124], clients need to re-key their decryption keys
after a join or leave event, that is, clients need to keep state. Research in this area is mainly
concerned with efficient re-keying (e.g., Sherman and McGrew [112]). In our approach,
the issuer of a decryption key decides about the lifetime of the key at the time when the
key is issued and embeds the lifetime in the key; there is no need for a client to update the
key while using the key.

The Boneh and Franklin IBE scheme [26] supports scenarios where a client needs to
have a particular decryption key in order to decrypt a ciphertext. Several research projects
have studied ways to make this scheme more flexible. Chen et al.’s scheme [40] supports
conjunction (i.e., the client needs to have multiple decryption keys) and restricted dis-
junction (i.e., the client needs to have one out of two decryption keys). The decryption
keys can be handed out by different authorities. Smart’s scheme [113] supports scenarios
where the required decryption keys can be expressed in the form of a “conjunctive-DNF”
(i.e.,

∧n
i=1(

∨mi

j=1(
∧mi,j

k=1 si,j,k)), wheresi,j,k denotes the statement that “the client has the
decryption key corresponding to the identityIDi,j,k”). The scheme supports only a sin-
gle issuer of decryption keys. Bagga and Molva [11] extend Smart’s scheme to allow for
multiple issuers of decryption keys. The three schemes assume that the client knows about
the required decryption keys, which does not always hold in our scenario. We require only
conjunction, which we achieve based on onion encryption. As mentioned in Section 7.4, in
our scheme, a client needs to perform at most

∑m−1
i=0 (n− i) decryption attempts, wheren

corresponds to the number of decryption keys issued to the client andm is the maximum
number of keys required for decryption. The corresponding number for the alternative
schemes presented in this section is2n − 1.

171

7.8 Summary

We presented an architecture for encryption-based access control in pervasive computing,
based on hierarchical identity-based encryption. Our solution supports information of
different granularity levels and makes it possible to constrain a client’s ability to decrypt a
ciphertext.

The evaluation of our architecture showed that identity-based encryption is expensive.
However, the overhead can be significantly lowered using a more optimized implementa-
tion. Furthermore, our architecture gives us the convenience of being able to use the name
of information or of a constraint as public key.

172

Chapter 8

Conclusions and Future Work

This dissertation set out to address challenges in access control to information in pervasive
computing environments. In particular, these challenges were:

Diversity in service administration. There will be many services, potentially offering
the same information, run by different organizations, even in a single social envi-
ronment.

Complex information. There will be complex information, revealing multiple types of
information, which could result in information leaks.

Derivation of information. Services that derive information will become attractive tar-
gets for attackers.

Confidential context-sensitive constraints.Confidential information will be used for con-
straining access, which could result in information leaks.

In this final chapter, we summarize our contributions toward solving these challenges.
Moreover, we reflect on their application and their limitations. Finally, we also describe
some directions for future work.

8.1 Contributions

The main contributions of this thesis are:

173

Client-based access-control architecture.We presented a distributed access-control ar-
chitecture for pervasive computing, in which clients need to prove to a service that
they are authorized to access the requested information (Chapter 2). We also defined
an information-representation scheme, and we argued that such a scheme should be
independent of the service providing the represented information. The architecture
and the representation scheme proved flexible enough to support the other contribu-
tions made in this thesis.

Information relationships. We proposed exploiting the semantics of information for ac-
cess control (Chapter 3). In particular, we capture the semantics of complex infor-
mation with information relationships. Furthermore, information relationships let
individuals bundle information that has identical access requirements and reduce
the number of access rights that individuals need to issue. We also argued that,
in pervasive computing, an owner of complex information should not be prevented
from granting explicit access rights to this information. We showed that informa-
tion relationships are feasible in practice based on an analytical evaluation and on a
measurement-based evaluation of an implementation within the client-based access-
control architecture.

Derivation-constrained access control.We proposed the formalization of derivation prop-
erties between information and exploiting these properties for access control (Chap-
ter 4). Namely, we require services that derive information to prove that they are
asking for information in order to answer a request for derived information. Based
on these two concepts, we reduce the influence of an intruder into such a service.
We outlined a trade-off between the flexibility in defining statements like access
rights or derivation properties and the security properties of our algorithm. Finally,
we showed that the proposed concepts are practical based on a measurement-based
implementation within the client-based access-control architecture.

Context-sensitive access control.We studied information leaks caused by context-sensitive
constraints in multiple access-control approaches (Chapter 5). We proposed the us-
age of access-rights graphs for the identification of conflicting constraints and for the
resolution of constraints. Moreover, we introduced hidden constraints and showed,
based on two sample implementations of this concept, how we can keep constraints
secret from a service. We argued that keeping access rights confidential can avoid
some information leaks and that constraints should be limited in their nature to make
it easier to check that constraints do not result in information leaks. Our implemen-
tation within the client-based access-control architecture suggests that constraints
can be efficiently dealt with in practice.

174

Obscured proof-of-access descriptions.We developed an approach for obscuring the
description of a required proof of access, as returned by a service to a client, based
on hierarchical identity-based encryption (Chapter 6). Our approach supports both
different granularities of information and constraints on access rights to informa-
tion and has many advantages when compared with approaches based on traditional
asymmetric cryptosystems. Whereas our sample implementation is costly in terms
of performance, we outlined several options to improve this performance.

Encryption-based access-control architecture.As an alternative to client-based access
control, we presented an encryption-based access-control architecture for pervasive
computing based on hierarchical identity-based encryption. Our architecture sup-
ports both different granularities of information and constraints on access rights to
information. Again, our sample implementation is costly in terms of performance,
but there is the potential for improvements.

8.2 Reflections

In this section, we apply the contributions presented in this thesis to two example scenar-
ios. The scenarios demonstrate how the contributions work in combination. Moreover,
the scenarios help outline some limitations of our contributions. The scenarios involve an
office and a home environment.

8.2.1 Office Scenario

The first scenario corresponds to the office scenario that we introduced in Section 1.1
and that we have used throughout the thesis. The scenario illustrates the application of
client-based access control, combination-based information relationships, and confidential
context-sensitive constraints.

In the scenario, Carol uses a calendar application provided by her employer. Since
the application supports client-specific access right (i.e., different clients can have access
rights with different kinds of constraints), it employs client-based access control, instead
of encryption-based access control. Furthermore, there is no gateway in this scenario, so
there is no need for derivation-constrained access control.

Carol wants to respect the privacy of people that she is meeting with. Therefore, for a
meeting with Bob, she defines a combination-based information relationship between the
corresponding calendar entry and Carol and Bob’s location and activity information. (In

175

the implementation, Carol’s calendar application defines this relationship on Carol’s behalf
when Carol sets up a meeting.) When Dave requests access to Carol’s calendar entry, he is
informed by the calendar service of the required proof of access. In particular, the service
tells Dave that he needs to prove that he can access Carol and Bob’s location and activity
information. However, to avoid an information leak, the service cannot reveal Bob’s iden-
tity to Dave. Therefore, the service creates an obscured proof-of-access description asking
for Bob’s location. (There is no need to create an obscured proof-of access description
asking for Bob’s activity. Since the composition of calendar information is well known,
Dave can infer that he also needs to submit an access right to Bob’s activity information
after understanding the obscured description asking for Bob’s location information.) In
addition, the service directly asks for access rights to Carol’s location and activity infor-
mation. Dave searches his secrets to understand the obscured proof-of-access description.
He will succeed if he is in the possession of an access right to Bob’s location informa-
tion. Next, he submits access rights to Carol and Bob’s location and activity information
to the calendar service. In particular, he submits four proofs showing that Dave can speak
for Carol and Bob regarding their location and activity information. The calendar service
combines these proofs with the combination-based relationship and verifies the combined
proof. If the verification succeeds, the service will return Carol’s calendar entry to Dave.

Carol wants her executive assistant, Alice, to have access to her calendar entry, regard-
less of the access rights defined by people that Carol is meeting with. Therefore, Carol
grants Alice an access right to the entry. The access right is constrained to Carol being in
Pittsburgh and to Carol not being on vacation. Carol uses hidden constraints when defin-
ing these constraints to make it easier for Alice to verify whether she can send a proof
of access to the calendar service. When Alice wants to access Carol’s calendar entry, Al-
ice builds an access-rights graph, which tells her that she first needs to get assurances for
Carol’s location and activity from the corresponding services. Assuming that Carol has
granted Alice access rights to this information, Alice can assemble them in proofs of ac-
cess and retrieve the assurances. Next, she assembles the assurances and her access right
to the calendar information in a proof of access. Before sending this proof to the calen-
dar service, Alice must ensure that Carol’s location and activity information do not leak
to the issuer of the access right. This check is straightforward, because the constraints in
the access right are about the issuer of the access right, and the issuer has access to this
constraint information. The constraints in the access right to the calendar information are
hidden, so Alice does not have to verify whether the calendar service has access to Carol’s
location and activity information. Therefore, Alice can send her proof of access to the
service, which will verify the proof and return the requested information.

Let us now discuss limitation of our contributions in the context of the given scenario:

176

• If Carol meets with a person whose location or activity information Alice is not au-
thorized to access, Alice will still be able to learn this information from the calendar
entry. This approach corresponds to already existing, widely accepted social behav-
ior, that is, granting an executive assistant access to her boss’ calendar. Moreover,
the usefulness of a service could be drastically reduced otherwise.

• The secrets required for understanding obscured proof-of-access descriptions are not
forwardable. If Dave has access to Carol’s calendar entry based on the combination-
based relationship, he can forward the access rights that grant him access to a third
entity. However, he cannot forward the secrets that allow him to understand an
obscured proof-of-access description generated by the calendar service. Therefore,
the third entity would have to submit all potentially relevant access rights to the
calendar service.

• Alice retrieves assurances for Carol’s location and activity information before ac-
cessing Carol’s calendar entry. It is possible that Carol’s location or activity changes
between the time the assurances are issued and the time the calendar information is
accessed. Timestamped queries can avoid this staleness problem. We do not con-
sider staleness of context-sensitive information to be a severe issue for pervasive
computing and let a service that provides context-sensitive information indicate for
how long it expects an assurance to remain valid.

• There are attacks that we do not address in the thesis and that might allow an attacker
to learn (some) information about Carol’s calendar entry, without having an access
right to this information. For example, the attacker could walk by Carol’s office and
learn Bob’s current location and activity.

8.2.2 Home Scenario

Let us now discuss a home scenario. Its main difference, when compared with the first
scenario, is the existence of a service acting as a gateway. Namely, the scenario illustrates
the application of derivation-constrained access control and bundling-based information
relationships.

Dave has a sensor network in his home. Among other information, this network pro-
vides location information about Dave and his family. In particular, a location service in
Dave’s house gathers sensor information and uses this information for deriving people’s
location information. Dave would like to limit the impact of intruders into this service. The
information returned by the sensors is of a raw nature. Therefore, having a sensor return

177

encrypted information and having the location service compute on encrypted information
is not an option. Instead, Dave employs derivation-constrained access control and grants
the location service only derivation-constrained access to the raw sensor information.

Furthermore, whereas Dave might want friends of the family to have access to the
family’s location information, he does not want them to have access to the raw sensor
information. Therefore, he grants the friends only access rights to the location information.
(Dave could constrain these access rights in a similar way as outlined in the first scenario.)
In this setup, the location service can access the raw sensor information only if there is an
authorized request from one of the family’s friends for location information.

Dave employs many different types of sensors (thermostat, light, weight,..), and there
are many instances of each sensor type. Dave wants each family member to have access
to the information returned by all sensors. In addition, a house sitter should (temporar-
ily) have the same access. Instead of manually defining access rights for each sensor and
individual, Dave bundles the information provided by the sensors in a single type of infor-
mation and grants individuals access to the bundle. This strategy decreases the number of
statements that Dave needs to issue. To grant a house sitter access, Dave issues a single
access right to the entire information bundle, where the access right has a limited lifetime.
When incorporating a new sensor, Dave defines a bundling-based relationship that bundles
the information provided by the sensor in the single type of information.

Let us now discuss limitation of our contributions in the context of the given scenario:

• An attacker into the location service still gets to see the raw sensor information
returned to the location service when a friend of the family sends an authorized
request for location information to the location service.

• For some sensors, the location service needs to continuously issue queries to a sen-
sor, not just upon receiving a query from a client (e.g., a door sensor registering
people entering/leaving a room). Derivation-constrained access control is not appli-
cable here, and the location service needs unconstrained access rights. Therefore,
an attacker into the service will be able to issue authorized queries for some sensor
information.

• While bundling-based relationships reduce the number of decisions that an individ-
ual needs to make, they increase the set of options that are available to Dave and
that we expect Dave to be familiar with. We expect the concept to be familiar since
it is also used for other applications. However, only a wide-scale deployment of our
mechanisms can validate this expectation.

178

8.3 Directions for Future Work

This dissertation opens up new interesting directions for future research. In this section,
we outline some directions.

8.3.1 Remote Discovery of Certificates

In this thesis, we assumed that a client building a proof of access has the required cer-
tificates expressing access rights or information relationships locally available. This as-
sumption might not hold in practice. The assumption holds if there are no information
relationships and if all access rights are issued before the client tries to access information.
In such a scenario, an issuer of an access right can give the subject both the access right
and any access rights that grant access to the issuer. For example, Tamassia et al. [120]
explore this scenario. However, if (some) access rights are issued only upon a request, the
assumption breaks and a client needs to perform remote discovery of access rights before
issuing the request. Bauer et al. [15] examine this scenario. Alternatively, a service can
perform this search, as studied by Minami and Kotz [93]. The assumption also breaks
if access rights are more flexible (e.g., access is granted to an entire group of people, as
explored by Li et al. [88]) or if there are information relationships. Here, the problem is
that group membership certificates or information relationships could be defined after an
access right that exploits them is defined, so the issuer of the access right cannot hand
them over to the subject(s) of the access right when issuing this access right. Furthermore,
credentials may be confidential, which can complicate a client’s search. For example, a
company might not be willing to publicly release membership certificates for all its em-
ployees. Similarly, access rights, information relationships, and membership certificates
can contain sensitive information, which a client might be reluctant to reveal to a service
in a proof of access.

8.3.2 Semantics for Access-Control Logic

We have not proved soundness of our extensions to Lampson et al.’s theory of authenti-
cation. Abadi et al. [1] prove soundness of this logic based on a semantic model of the
logic. Similarly, Howell and Kotz [68] provide a semantic model for their extensions to
the logic (i.e., the restricted speaks-for relationship). It is possible to give our extensions a
semantics in this model. However, this model is rather complex. An alternative approach
is to define our axioms in a higher-order logic, which is known to be sound. In Section 3.9,
we explored this approach by adding information relationships to Bauer’s proof-carrying

179

authorization framework [13]. We can incorporate our other contributions into this frame-
work along the same lines.

8.3.3 Semantic-Web Concepts

In the context of the Semantic Web [17], many ontologies for representing knowledge and
tools for reasoning about this knowledge have been developed. An interesting question is
whether we can enhance our access-control architecture with these ontologies and tools?
For example, we could exploit them for defining and reasoning about information relation-
ships. Potentially, these relationships could be more complex than the ones introduced in
Chapter 3. Along the same lines, we can investigate the benefits of combining different ap-
proaches for running access control in pervasive computing. For instance, there are some
research projects that already make usage of ontologies and Semantic Web tools for access
control [38, 51]. However, these projects assume that an owner of information manages
the access policy for this information and do not support distributed credentials, as we do
in our access-control architecture.

8.3.4 Uncertainty in Access Control

Access rights can be constrained to, for example, someone’s location. However, due to
the limited accuracy of technologies for locating people, often there is uncertainty about
a person’s location. Access control must be able to deal with such uncertainty. Some
interesting questions are: When an individual grants another individual access to personal
information under the constraint that this person is at a particular location, is the individual
willing to deal with (some) uncertainty? How do we handle multiple services that provide
(conflicting) location information?

8.4 Summary

Apart from the technical contributions made in this thesis, an informal contribution is to
make the public, in particular, researchers in the area of pervasive computing, aware of
some information leaks that arise when existing access-control approaches are naı̈vely ap-
plied to these new computing environments. These leaks will violate people’s privacy.
Unfortunately, as found in a survey [84], researchers in pervasive computing are not nec-
essarily aware of or worried about these privacy violations. Lahlou et al. [80] summarize
this survey as follows:

180

Privacy was either an abstract problem; not a problem yet (they are “only
prototypes”); not a problem at all (firewalls and cryptography would take care
of it); not their problem (but one for politicians, lawmakers, or, more vaguely,
society); or simply not part of the project deliverables.

The Internet is the primary example of a research project that largely ignored security
issues and that (unexpectedly?) grew into what it is today. Let us not repeat this mistake
for pervasive computing.

181

182

Appendix A

Hierarchical Identity-Based Encryption

A.1 Operations

In this section, we describe the HIBE operations introduced in Section 6.3 in detail. Our
operations are based on the operations proposed by Gentry and Silverberg [54], we extend
these operations to support multiple hierarchies. (We merge theLower Level Setup()
andExtract() operations.) We also assume that there is a global set of public parameters.
Gentry and Silverberg present two encryption schemes, a semantically secure one and a
scheme secure against adaptive chosen ciphertext attacks in the random oracle model. For
presentation purposes, we base our discussion on the semantically secure scheme. It is
straightforward to generalize our scheme to a scheme secure against chosen ciphertext
attacks.

There is a set of public parametersparams = (G1, G2, q, ê, P0, H1, H2), whereG1 and
G2 are groups of some prime orderq, ê is an admissible paring:G1 ×G1 → G2, P0 is an
arbitrary generator ofG1, andH1 andH2 are cryptographic hash functions{0, 1}∗ → G1

andG2 → {0, 1}n for somen, respectively. One of the properties of an admissible pairing
is bilinearity: ê(aQ, bR) = ê(Q,R)ab for all Q,R ∈ G1 and alla, b ∈ Z.

• Root Setup(params) → Q0:
Choose a random master secret,s0 ∈ Z/qZ, and returnQ0 = s0P0.

• Extract(〈IDi,1, . . . , IDi,ti〉, Si,ti−1, params) → Si,ti , 〈Qi,1, . . . , Qi,ti−1〉 with ti ≥
1:

1. If ti > 1, pick random, secretsi,ti−1 ∈ Z/qZ. Otherwisesi,0 = s0.

183

2. ComputePi,ti = H1(IDi,1, . . . , IDi,ti) ∈ G1.

3. Compute secret pointSi,ti = Si,ti−1 +si,ti−1Pi,ti =
∑ti

j=1 si,j−1Pi,j. (Si,0 is the
identity element ofG1.)

4. Compute (non-secret)Qi,j = si,jP0 for 1 ≤ j ≤ ti − 1.

• Encrypt(〈ID1,1, . . . , ID1,t1〉, . . . , 〈IDh,1, . . . , IDh,th〉, M, Q0, params) → C:

1. ComputePi,j = H1(IDi,1, . . . , IDi,j) ∈ G1 for 1 ≤ j ≤ ti and1 ≤ i ≤ h.

2. Choose a randomr ∈ Z/qZ.

3. Set the ciphertext to be:

C = [rP0, 〈rP1,2, . . . , rP1,t1〉, . . . 〈rPh,2, . . . , rPh,th〉, M ⊕H2(g
r)]

where

g =
h∏

i=1

ê(Q0, Pi,1) ∈ G2.

• Decrypt(〈S1,t1 , . . . , Sh,th〉, 〈Q1,1, . . . , Q1,t1−1〉, . . . , 〈Qh,1, . . . , Qh,th−1〉, C, params)
→ M :

Let C = [U0, 〈U1,2, . . . , U1,t1〉, . . . , 〈Uh,2, . . . , Uh,th〉, V] be the ciphertext encrypted
using the sequences of IDs〈ID1,1, . . . , ID1,t1〉, . . . , 〈IDh,1, . . . , IDh,th〉. To decrypt
C, compute

V ⊕H2(

h∏
i=1

ê(U0, Si,ti)

h∏
i=1

ti∏
j=2

ê(Qi,j−1, Ui,j)

) = M.

The security of the scheme is based on the hardness of the Bilinear Diffie-Hellman
problem: Given a randomly chosenP ∈ G1, as well asaP , bP , andcP (for unknown
randomly chosena, b, c ∈ Z/qZ), computêe(P, P)abc. For proving security of our scheme
in the random oracle model, we have to modify Gentry and Silverberg’s proof [54, Ap-
pendix A.3]. These modifications are straightforward, they exploit the same ideas that we
have exploited for extending Gentry and Silverberg’s scheme. We give only an outline
of the modifications here: There needs to be a separateH list

1 for each hierarchy, and the

184

challenge operation needs to take the additional hierarchies into account. For the latter
modification, we rely on the symmetry ofê. In addition, the game between the challenger
and the adversary needs to be extended such that the adversary can issue private key ex-
traction queries for multiple PKGs. In particular, the adversary can issue extraction queries
for any(Q0, 〈ID1,1, . . . , ID1,t1〉, . . . 〈IDh,1, . . . , IDh,th〉), as long as eitherQ0 is different
from theQ0 on which the adversary is challenged or none of the ID sequences is identical
to the corresponding sequence (or a prefix of this sequence) in the set of sequences on
which the adversary is challenged.

The alternative solution for client-based access control suggested in Section 6.3.3 re-
lies on the hardness of the Decision Bilinear Diffie-Hellman problem: Given a randomly
chosenP ∈ G1, as well asaP , bP , cP , andr (for somea, b, c, r ∈ Z/qZ), returntrue if
r = ê(P, P)abc.

A.2 Optimizations

In this section, we discuss a few optimizations that we applied in our implementation of
the HIBE operations outlined in Appendix A.1.

Encrypt() is a time-critical operation since it is run by a service. To speed up this
operation, a service can precompute thePi,j in step 1 and the pairings in step 3. In addition,
the service can precompute sliding windows for multiplications onPi,j and use them for
the computation ofrPi,j.

A.3 Evaluation

Our Java-based implementation, which is based on a C implementation [56], exploits Tate
pairings over super-singular elliptic curves. We use a 160 bit prime forq and a 512 bit
prime forp, whereG1 is an order-q subgroup ofE(Fp) andG2 is an order-q subgroup of
Fp2. For the configuration given in Section 7.6, the performance of the expensive crypto-
graphic operations is given in Table A.1. For the C-based implementation [89], we use the
same set of parameters and configuration as for the Java-based version (gcc 3.2.3 instead
of Java 1.4.2).

185

Operation Java C
µ (σ) µ (σ)

rPi,j 14 (1) 4 (0)
Exponentiation 11 (1) 2 (0)
Pairing 136 (2) 29 (0)

Table A.1: Mean and standard deviation of elapsed time for expensive cryptographic oper-
ations in our Java-based implementation and in MIRACL’s C-based implementation [89]
[ms].

186

Bibliography

[1] M. Abadi, M. Burrows, and B. Lampson. A Calculus for Access Control in Dis-
tributed Systems.ACM Transactions on Programming Languages and Systems, 15
(4):706–734, October 1993. 2.6.2, 4.4, 8.3.2

[2] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-
Lee, G. Neven, P. Paillier, and H. Shi. Searchable Encryption Revisited: Consis-
tency Properties, Relation to Anonymous IBE, and Extensions. InProceedings of
CRYPTO 2005, pages 205–222, August 2005. 6.3.3

[3] N. R. Adam and J. C. Wortmann. Security-Control Methods for Statistical
Databases: A Comparative Study.ACM Computing Surveys (CSUR), 21(4):515–
556, December 1989. 5.4, 5.10

[4] S. G. Akl and P. D. Taylor. Cryptographic Solution to a Problem of Access Control
in a Hierarchy.ACM Transactions on Computer Systems, 1(3):293–248, 1983. 7.7

[5] J. Al-Muhtadi, A. Ranganathan, R. Campbell, and M. D. Mickunas. Cerberus: A
Context-Aware Security Scheme for Smart Spaces. InProceedings of IEEE Interna-
tional Conference on Pervasive Computing and Communications (PerCom 2003),
pages 489–496, March 2003. 1.2.1, 1.2.2, 1.2.4, 2.3.1, 2.8.2, 2.8.3, 5.10

[6] Teen Arrive Alive. http://www.teenarrivealive.com . 1

[7] A. W. Appel and E. W. Felten. Proof-Carrying Authentication. InProceedings of
6th ACM Conference on Computer and Communications Security, November 1999.
2.3.1, 2.3.3, 2.8.3

[8] P. Ashley, S. Hada, G. Karjoth, and M. Schunter. E-P3P Privacy Policies and Privacy
Authorization. InProceedings of Workshop on Privacy in the Electronic Society
(WPES), pages 103–109, November 2002. 2.1, 2.2.2

187

http://www.teenarrivealive.com

[9] V. Atluri and A. Gal. An Authorization Model for Temporal and Derived Data: Se-
curing Information Portals.ACM Transactions on Information and System Security,
5(1):62–94, February 2002. 3.10

[10] J. Bacon, K. Moody, and W. Yao. A Model of OASIS Role-Based Access Control
and its Support for Active Security.ACM Transactions on Information and System
Security (TISSEC), 5(4):492–540, November 2002. 5.10

[11] W. Bagga and R. Molva. Policy-Based Cryptography and Applications. InProceed-
ings of 9th International Conference of Financial Cryptography and Data Security
(FC’05), 2005. 7.7

[12] D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H.-C. Wong. Secret
Handshakes from Pairing-Based Key Agreements. InProceedings of 2003 IEEE
Symposium on Security and Privacy, pages 180–196, May 2003. 6.4.1, 6.6

[13] L. Bauer.Access Control for the Web via Proof-Carrying Authorization. PhD thesis,
Princeton University, November 2003. 3.1, 3.9, 8.3.2

[14] L. Bauer. Personal Communication, June 2005. 3.9.2

[15] L. Bauer, S. Garriss, and M. K. Reiter. Distributed Proving in Access-Control Sys-
tems. InProceedings of 2005 IEEE Symposium on Security and Privacy, pages
81–95, May 2005. 8.3.1

[16] L. Bauer, M. A. Schneider, and E. W. Felten. A General and Flexible Access-
Control System for the Web. InProceedings of 11th Usenix Security Symposium,
pages 93–108, August 2002. 1.3, 2.2.1, 2.3.3, 2.8.2, 2.8.3, 3.6.3, 3.9.2, 3.9.3, 3.9.5,
4.7

[17] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web.Scientific American,
May 2002. 1.2.2, 8.3.3

[18] E. Bertino, C. Bettini, and P. Samarati. A Temporal Authorization Model. InPro-
ceedings of 2nd ACM Conference on Computer and Communications Security (CCS
1994), pages 126–135, November 1994. 4.9

[19] E. Bertino, F. Origgi, and P. Samarati. A New Authorization Model for Object-
Oriented Databases.Database Security, VIII (A-60), pages 199–222, 1994. 3.10

[20] M. Bishop.Computer Security: Art and Science. Addison Wesley, November 2002.
ISBN 0-201-44099-7. 2.1

188

[21] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. InPro-
ceedings of 17th IEEE Symposium on Security and Privacy, pages 164–173, 1996.
2.2.1, 2.8.4

[22] M. Blaze, J. Ioannidis, and A. Keromytis. The KeyNote Trust-Management System
Version 2. RFC 2704, September 1999. 2.2.1, 2.8.4, 3.10

[23] BodyMedia.http://www.bodymedia.com . 1

[24] D. Boneh and X. Boyen. Efficient Selective-ID Secure Identity Based Encryption
Without Random Oracles. InProceedings of EUROCRYPT 2004, pages 223–238,
May 2004. 6.5

[25] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical Identity Based Encryption with
Constant Size Ciphertext. InProceedings of Eurocrypt 2005, May 2005. 6.5, 7.6

[26] D. Boneh and M. Franklin. Identity-Based Encryption from the Weil Pairing.SIAM
J. of Computing, 32(3):586–615, 2003. Extended Abstract in Proceedings of Crypto
2001, pp. 213-229, 2001. 6.3.1, 6.3.3, 6.4.1, 6.5, 6.6, 7.7

[27] D. Boneh, C. Gentry, and Waters. B. Collusion Resistant Broadcast Encryption
With Short Ciphertexts and Private Keys. Cryptology ePrint Archive: Report
2005/018, January 2005. 7.7

[28] N. Borisov and E. Brewer. Active Certificates: A Framework for Delegation. In
Proceedings of Network and Distributed System Security Symposium (NDSS ’02),
February 2002. 2.8.4

[29] R. Bradshaw, J. Holt, and K. E. Seamons. Concealing Complex Policies with Hid-
den Credentials. InProceedings of 11th ACM conference on Computer and Com-
munications Security (CCS 2004), pages 146–157, October 2004. 6.3.4, 6.6

[30] S Brands.Rethinking Public Key Infrastructures and Digital Certificates: Building
in Privacy. MIT Press, 2000. ISBN 0-262-02491-8. 6.6

[31] B. Briscoe. MARKS: Zero Side Effect Multicast Key Management Using Arbitrar-
ily Revealed Key Sequences. InProceedings of First International Workshop on
Networked Group Communication, pages 301–320, November 1999. 7.7

[32] S. Castano, M. Fugini, G. Martella, and P. Samarati.Database Security. Addison
Wesley Professional, November 1994. ISBN 0-201-59375-0. 2.1, 5.4, 5.10

189

http://www.bodymedia.com

[33] C. Castelluccia, S. Jarecki, and G. Tsudik. Secret Handshakes from CA-Oblivious
Encryption. InProceedings of Asiacrypt 2004, December 2004. 6.4.1, 6.6

[34] A. Cavoukian. Building in Privacy from the Bottom up: How to Preserve Privacy
in a Security-Centric World. Talk given at Carnegie Mellon University, November
2004. 2.1

[35] D. Chaum. Security Without Identification: Transaction Systems to Make Big
Brother Obsolete.Communications of the ACM, 28(10):1030–1044, October 1985.
6.6

[36] H. Chen, T. Finin, and A. Joshi. An Ontology for Context-aware Pervasive Com-
puting Environments.Special Issue on Ontologies for Distributed Systems, 18(3):
197–207, May 2003. 2.8.3

[37] H. Chen, T. Finin, and A. Joshi. A Pervasive Computing Ontology for User Privacy
Protection in the Context Broker Architecture. Technical Report TR-CS-04-08, De-
partment of Computer Science & Electrical Engineering, University of Maryland,
2004. 2.8.3

[38] H. Chen, T. Finin, and A. Joshi. Semantic Web in the Context Broker Architecture.
In Proceedings of 2nd IEEE International Conference on Pervasive Computing and
Communications (PerCom 2004), pages 277–286, March 2004. 1.2.1, 1.2.2, 1.2.4,
2.3.1, 3.10, 5.10, 6.4.1, 8.3.3

[39] H. Chen, F. Perich, T. Finin, and A. Joshi. SOUPA: Standard Ontology for Ubiq-
uitous and Pervasive Applications. InProceedings of First Annual International
Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQ-
uitous 2004), August 2004. 2.5.1, 2.8.2

[40] L. Chen, K. Harrison, D. Soldera, and N. Smart. Applications of Multiple Trust
Authorities in Pairing Based Cryptosystems. InProceedings of International Con-
ference on Infrastructure Security (InfraSec 2002), pages 260–275, October 2002.
7.7

[41] C. Cocks. An Identity Based Encryption Scheme Based on Quadratic Residues.
In Proceedings of 8th IMA International Conference on Cryptography and Coding,
pages 360–363, December 2001. 6.5

[42] M. J. Covington, P. Fogla, Z. Zhan, and M. Ahamad. A Context-Aware Security
Architecture for Emerging Applications. InProceedings of 18th Annual Computer

190

Security Applications Conference (ACSAC 2002), December 2002. 1.2.1, 1.2.2,
2.3.1, 2.8.2, 2.8.3, 5.10

[43] M. J. Covington, W. Long, S. Srinivasan, A. Dey, M. Ahamad, and G. Abowd.
Securing Context-Aware Applications Using Environment Roles. InProceedings of
6th ACM Symposium on Access Control Models and Technologies (SACMAT ’01),
pages 10–20, May 2001. 5.10

[44] L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, and J. Reagle. The
Platform for Privacy Preferences 1.0 (P3P1.0) Specification. W3C Recommenda-
tion, April 2002. 2.8.3

[45] M. Dean and G. Schreiber. OWL Web Ontology Language Reference. W3C Rec-
ommendation, February 2004. 2.5.1, 2.8.3

[46] D. E. Denning. Cryptography and Data Security. Addison Wesley, June 1982.
ISBN 0-201-10150-5. 5.4, 5.10

[47] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI
Certificate Theory. RFC 2693, September 1999. 2.2.1, 2.4.2, 2.5.1, 2.5.3, 2.8.4,
3.10, 5.8.3, 6.3.1

[48] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and T. Ylonen.
SPKI Examples. Internet Draft, March 1998.http://theworld.com/˜cme/
examples.txt . 6.5

[49] A. Fiat and M. Naor. Broadcast Encryption. InProceedings of Crypto ’93, pages
480–491, August 1993. 7.7

[50] K. Frikken, M. Atallah, and J. Li. Hidden Access Control Policies with Hidden Cre-
dentials. InProceedings of Workshop on Privacy in the Electronic Society (WPES),
pages 27–28, October 2004. 6.6

[51] F. Gandon and N. Sadeh. A Semantic eWallet to Reconcile Privacy and Con-
text Awareness. InProceedings of 2nd International Semantic Web Conference
(ISWC2003), October 2003. 1.2.1, 1.2.2, 1.2.4, 2.5.1, 2.8.2, 2.8.3, 3.10, 5.10,
6.4.1, 8.3.3

[52] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project Aura: Towards
Distraction-Free Pervasive Computing.IEEE Pervasive Computing, 1(2):22–31,
April-June 2002. 2.6.4

191

http://theworld.com/~cme/examples.txt
http://theworld.com/~cme/examples.txt

[53] M. Gasser and E. McDermott. An Architecture for Practical Delegation in a Dis-
tributed System. InProceedings of IEEE Symposium on Security and Privacy, pages
20–30, May 1990. 4.2, 4.5.2, 4.9

[54] C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. InProceedings
of Asiacrypt 2002, pages 548–566, December 2002. 6.3.1, 6.3.2, 6.3.3, 7.6, A.1,
A.1

[55] P. G. Griffiths and B. Wade. An Authorization Mechanism for a Relational Database
System.ACM Transactions on Database Systems, 1(3):242–255, 1976. 1.1

[56] Stanford Applied Crypto Group. IBE Secure E-mail.http://crypto.
stanford.edu/ibe . 6.5, A.3

[57] V. Gupta, M. Millard, S. Fung, F. Zhu, N. Gura, H. Eberle, and S. Chang. Sizzle:
A Standards-based End-to-End Security Architecture for the Embedded Internet.
In Proceedings of 3rd IEEE International Conference on Pervasive Computing and
Communications (PerCom 2005), pages 247–256, March 2005. 2.3.4

[58] N. Hardy. The Confused Deputy (or why capabilities might have been invented).
Operating Systems Review, 22(4):36–38, October 1988. 4.6

[59] L. Harn and H. Y. Lin. A Cryptographic Key Generation Scheme for Multi-level
Data Security.Computer & Security, 9(6):539–546, 1990. 7.7

[60] U. Hengartner and P. Steenkiste. Access Control to Information in Pervasive Com-
puting Environments. InProceedings of 9th Workshop on Hot Topics in Operating
Systems (HotOS IX), pages 157–162, May 2003. 1.1

[61] U. Hengartner and P. Steenkiste. Implementing Access Control to People Location
Information. InProceedings of 9th ACM Symposium on Access Control Models and
Technologies (SACMAT 2004), pages 11–20, June 2004. 2.4, 2.4.4

[62] U. Hengartner and P.. Steenkiste. Exploiting Hierarchical Identity-Based En-
cryption for Access Control to Pervasive Computing Information. To appear in
Proc. of First IEEE/CreateNet International Conference on Security and Privacy
for Emerging Areas in Communication Networks (IEEE/CreateNet SecureComm
2005), September 2005. 6.1, 7.1

[63] U. Hengartner and P. Steenkiste. Exploiting Information Relationships for Access
Control. InProceedings of 3rd IEEE International Conference on Pervasive Com-
puting and Communications (PerCom 2005), pages 269–278, March 2005. 3

192

http://crypto.stanford.edu/ibe
http://crypto.stanford.edu/ibe

[64] J. Hightower and G. Borriello. Location Systems for Ubiquitous Computing.IEEE
Computer, 34(8):57–66, August 2001. 2.8.1

[65] J. Holt, R. W. Bradshaw, K. E. Seamons, and H. Orman. Hidden Credentials. In
Proceedings of 2nd ACM Workshop on Privacy in the Electronic Society, October
2003. 6.3.3, 6.6

[66] J. I. Hong and J. A. Landay. An Architecture for Privacy-Sensitive Ubiquitous
Computing. InProceedings of Second International Conference on Mobile Systems,
Applications, and Services (Mobisys 2004), pages 177–189, June 2004. 1.2.1, 2.1,
2.5.1, 2.8.2, 3.10

[67] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan, R. N.
Sidebotham, and M. J. West. Scale and Performance in a Distributed File System.
ACM Transactions on Computer Systems, 6(1):51–81, February 1988. 1.1, 1.1.1,
2.2.1

[68] J. Howell and D. Kotz. A Formal Semantics for SPKI. InProceedings of 6th
European Symposium on Research in Computer Security (ESORICS 2000), pages
140–158, October 2000. 2.5.2, 8.3.2

[69] J. Howell and D. Kotz. End-to-end authorization. InProceedings of 4th Sympo-
sium on Operating System Design & Implementation (OSDI 2000), pages 151–164,
October 2000. 1.3, 2.2.1, 2.3.3, 2.3.4, 2.4.2, 2.6.3, 2.8.2, 2.8.4, 4.2, 4.5.1, 4.9

[70] Y.-C. Hu, M. Jakobsson, and A. Perrig. Efficient Constructions for One-way Hash
Chains. InProceedings of Applied Cryptography and Network Security (ACNS
2005), June 2005. 5.8.2

[71] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmaninan. Flexible Support
for Multiple Access Control Policies.ACM Transactions on Database Systems, 26
(2):214–260, June 2001. 3.10

[72] T. Jim. SD3: A Trust Management System with Certified Evaluation. InProceed-
ings of 2001 IEEE Symposium on Security and Privacy, pages 106–115, May 2001.
2.8.3, 2.8.4

[73] G. Judd and P. Steenkiste. Providing Contextual Information to Ubiquitous Com-
puting Applications. InProceedings of IEEE International Conference on Perva-
sive Computing and Communications (PerCom 2003), pages 133–142, March 2003.
2.6.4

193

[74] L. Kagal, T. Finin, and A. Joshi. A Policy Language for a Pervasive Computing
Environment. InProceedings of 4th International Workshop on Policies for Dis-
tributed Systems and Networks, pages 63–76, June 2004. 2.8.3

[75] T. Kagal, L. Finin and A. Josh. Trust-Based Security in Pervasive Computing En-
vironments.IEEE Computer, pages 154–157, December 2001. 1.2.1, 1.2.2, 2.3.1

[76] G. Karjoth, M. Schunter, and M. Waidner. Platform for Enterprise Privacy Practices:
Privacy-enabled Management of Customer Data. InProceedings of 2nd Workshop
on Privacy Enhancing Technologies (PET2002), pages 69–84, April 2002. 2.1,
2.2.2

[77] L. Kissner and D. Song. Privacy-Preserving Set Operations. InProceedings of
CRYPTO 2005, August 2005. 4.9

[78] O. Kornievskaia, P. Honeyman, B. Doster, and K. Coffman. Kerberized Credential
Translation: A Solution to Web Access Control. InProceedings of 10th Usenix
Security Symposium, August 2001. 4.2, 4.5.2, 4.9

[79] S. Lahlou and F. Jegou. European Disappearing Computer Privacy Design Guide-
lines V1.0. Ambient Agoras IST-DC report D15.4. Disappearing Computer Initia-
tive, October 2003. 3.4

[80] S. Lahlou, M. Langheinrich, and C. Röcker. Privacy and Trust Issues with Invisible
Computers.Communications of the ACM, 48(3):59–60, March 2005. 1, 2.1, 8.4

[81] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in Distributed
Systems: Theory and Practice.ACM Transactions on Computer Systems, 10(4):
263–310, November 1992. 2.3.1, 2.3.3, 2.5.2, 4.2, 4.4, 4.5.2, 4.9, 1

[82] M. Langheinrich. Privacy by Design - Principles of Privacy-Aware Ubiquitous Sys-
tems. InProceedings of Third International Conference on Ubiquitous Computing
(Ubicomp 2001), pages 273–291, Oct 2001. 1, 2.1

[83] M. Langheinrich. A Privacy Awareness System for Ubiquitous Computing Envi-
ronments. InProceedings of UbiComp 2002, pages 237–245, September 2002. 2.1

[84] M. Langheinrich. The DC-Privacy Troubadour - Assessing Privacy Implications of
DC-Projects. InProceedings of Designing for Privacy Workshop. DC Tales Con-
ference, June 2003. 8.4

194

[85] U. Leonhardt and J. Magee. Security Considerations for a Distributed Location
Service. Journal of Network and Systems Management, 6(1):51–70, March 1998.
2.8.1

[86] N. Li, W. Du, and D. Boneh. Oblivious Signature-Based Envelope. InProceedings
of 22nd ACM Symposium on Principles of Distributed Computing (PODC 2003),
pages 182–189, July 2003. 6.6

[87] N. Li and J. C. Mitchell. RT: A Role-based Trust-managment Framework. InPro-
ceedings of The Third DARPA Information Survivability Conference and Exposition
(DISCEX III), pages 201–212, April 2003. 2.5.1, 2.8.3

[88] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed Credential Chain Dis-
covery in Trust Management.Journal of Computer Security, 11(1):35–86, February
2003. 2.8.4, 3.10, 8.3.1

[89] Shamus Software Ltd. Multiprecision Integer and Rational Arithmetic C/C++ Li-
brary (MIRACL). http://indigo.ie/˜mscott/ . 6.5, 7.6, A.3, A.1

[90] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating Key Man-
agment from File System Security. InProceedings of 17th ACM Symposium on
Operating Systems Principles, pages 124–139, December 1999. 1.1

[91] P. McDaniel. On Context in Authorization Policy. InProceedings of 8th ACM
Symposium on Access Control Models and Technologies (SACMAT 2003), pages
80–89, June 2003. 5.10

[92] Microsoft. Microsoft Windows 2000 Advanced Server. http://www.
microsoft.com/windows2000/en/advanced/help/ . 1.1

[93] K. Minami and D. Kotz. Secure Context-sensitive Authorization. InProceedings of
3rd IEEE International Conference on Pervasive Computing and Communications
(PerCom 2005), pages 257–268, March 2005. 1.2.1, 1.2.3, 1.2.4, 2.8.2, 2.8.3, 5.10,
8.3.1

[94] K. Minami and D. Kotz. Secure Context-sensitive Authorization.Journal of Perva-
sive and Mobile Computing (PMC), 1(1), March 2005. 5.10

[95] A. C. Myers and B. Liskov. Complete, Safe Information Flow with Decentralized
Labels. InProceedings of 1998 IEEE Symposium on Security and Privacy, May
1998. 3.10

195

http://indigo.ie/~mscott/
http://www.microsoft.com/windows2000/en/advanced/help/
http://www.microsoft.com/windows2000/en/advanced/help/

[96] G. Myles, A. Friday, and N. Davies. Preserving Privacy in Environments with
Location-Based Applications.Pervasive Computing, 2(1):56–64, January-March
2003. 1.2.1, 2.3.1, 2.8.1, 2.8.3

[97] B.C. Neuman. Proxy-Based Authorization and Accounting for Distributed Sys-
tems. InProceedings of International Conference on Distributed Computing Sys-
tems, pages 283–291, May 1993. 4.2, 4.5.2, 4.9

[98] G. Neumann and M. Strembeck. An Approach to Engineer and Enforce Context
Constraints in an RBAC Environment. InProceedings of 8th ACM Symposium on
Access Control Models and Technologies (SACMAT 2003), pages 65–79, June 2003.
5.10

[99] Nextel. http://www.nextel.com . 1

[100] National Institute of Standards and Technology. Role-Based Access Control. Amer-
ican National Standard - ANSI INCITS 359-2004, February 2004. 1.1, 3, 3.2

[101] Oracle. Oracle Database 10g Security and Identity Managment. An Oracle White
Paper, December 2003. 1.1, 1.1.2, 1.1.4

[102] J. Park and R. Sandhu. The UCONABC Usage Control Model.ACM Transactions
on Information and System Security (TISSEC), 7(1):128–174, February 2004. 5.10

[103] P. Persiano and I Visconti. User Privacy Issues Regarding Certificates and the TLS
protocol. InProceedings of 7th ACM Conference on Computer and Communica-
tions Security (CCS 2000), pages 53–62, November 2000. 6.6

[104] F. Pfenning and C. Schürmann. System Description: Twelf - A Meta-Logical
Framework for Deductive Systems. InProceedings of 16th International Confer-
ence on Automated Deduction (CADE-16-99), pages 202–206, July 1999. 3.6.3,
3.9.5

[105] OpenSSL Project. OpenSSL.http://www.openssl.org . 4.8.1

[106] F. Rabitti, E. Bertino, W. Kim, and Darrell Woelk. A Model of Authorization for
Next-Generation Database Systems.ACM Transactions on Database Systems, 16
(1):88–131, March 1991. 3.10

[107] I. Ray, I. Ray, and N. Narasimhamurthi. A Cryptographic Solution to Implement
Access Control in a Hierarchy and More. InProceedings of 7th ACM Symposium on
Access Control Models and Technologies (SACMAT’02), pages 65–73, June 2002.
6.4.1, 7.7

196

http://www.nextel.com
http://www.openssl.org

[108] J. H. Saltzer and M. D. Schroeder. The Protection of Information in Computer
Systems. Proceedings of the IEEE, 63(9):1278–1308, September 1975. 2.4.3,
3.5.2

[109] R. S. Sandhu. Cryptographic Implementation of a Tree Hierarchy for Access Con-
trol. Information Processing Letters, 27(2):95–98, 1988. 7.7

[110] K. E. Seamons, M. Winslett, and T. Yu. Limiting the Disclosure of Access Con-
trol Policies During Automated Trust Negotation. InProceedings of Network and
Distributed System Security Symposium (NDSS’01), February 2001. 6.6

[111] A. Shamir. Identity-Based Cryptosystems and Signature Schemes. InProceedings
of Crypto ’84, pages 47–53, 1984. 6.3.1

[112] A. T. Sherman and D. A. McGrew. Key Establishment in Large Dynamic Groups.
IEEE Transactions on Software Engineering, 29(5):444–458, May 2003. 7.7

[113] N. P. Smart. Access Control Using Paring Based Cryptography. InProceedings
of The Cryptographer’s Track at RSA Conference (CT-RSA 2003), pages 111–121,
April 2003. 7.7

[114] D. K. Smetters and G. Durfee. Domain-Based Administration of Identity-Based
Cryptosystems for Secure Email and IPSEC. InProceedings of 12th Usenix Security
Symposium, August 2003. 6.4.1, 6.5

[115] K. R. Sollins. Cascaded Authentication. InProceedings of IEEE Symposium on
Security and Privacy, pages 156–163, May 1988. 4.2, 4.5.2, 4.9

[116] D. Song, D. Wagner, and A. Perrig. Practical Techniques for Searches on Encrypted
Data. InProceedings of 2000 IEEE Symposium on Security and Privacy, May 2000.
4.9

[117] M. Spreitzer and M. Theimer. Providing Location Information in a Ubiquitous
Computing Environment. InProceedings of SIGOPS ’93, pages 270–283, Dec
1993. 2.8.1

[118] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An Authentication Service
for Open Network Systems. InProceedings of the Winter 1988 USENIX Confer-
ence, pages 191–202, February 1998. 1.1

[119] Claymore Systems. PureTLS.http://www.rtfm.com/puretls/ . 2.6.4

197

http://www.rtfm.com/puretls/

[120] R. Tamassia, D. Yao, and W. H. Winsborough. Role-Based Cascaded Delegation. In
Proceedings of 9th ACM Symposium on Access Control Models and Technologies
(SACMAT 2004), pages 146–155, June 2004. 8.3.1

[121] A. Tripathi, T. Ahmed, D. Kulkarni, R. Kumar, and K. Kashiramka. Context-Based
Secure Resource Access in Pervasive Computing Environments. InProceedings of
First IEEE International Workshop on Pervasive Computing and Communications
Security(PerSec’04), pages 159–163, March 2004. 1.2.1, 2.3.1

[122] W.-G. Tzeng. A Time-Bound Cryptographic Key Assignment Scheme for Access
Control in a Hierarchy.IEEE Transactions on Knowledge and Data Engineering,
14(1):182–188, 2002. 7.7

[123] VERSUSTECH.http://www.versustech.com . 4.8.1

[124] D. M. Wallner, E. J. Harder, and R. C. Agee. Key Management for Multicast: Issues
and Architectures. RFC 2627, June 1999. 7.7

[125] B. R. Waters. Efficient Identity-Based Encryption Without Random Oracles. In
Eurocrypt 2005, May 2005. 6.5

[126] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters. Building an Encrypted
and Searchable Audit Log. InProceedings of 11th Annual Network and Distributed
System Security Symposium (NDSS 2004), February 2004. 6.5

[127] M. Weiser. The Computer for the 21st Century.Scientific American, 265(3):94–
104, September 1991. 1

[128] V. Welch, I. Foster, C. Kesselman, O. Mulmu, L. Pearlman, S. Tuecke, J. Gawor,
S. Meder, and F. Siebenlist. X.509 Proxy Certificates for Dynamic Delegation. In
Proceedings of 3rd Annual PKI R&D Workshop, April 2004. 2.8.4

[129] W. H. Winsborough and N. Li. Towards Practical Automated Trust Negotiation. In
Proceedings of 3rd International Workshop on Policies for Distributed Systems and
Networks (Policy 2002), pages 92–103, June 2002. 6.6

[130] W. H. Winsborough and N. Li. Safety in Automated Trust Negotiation. InProceed-
ings of 2004 IEEE Symposium on Security and Privacy, pages 147–160, May 2004.
5.10, 6.6

[131] C. K. Wong, M. Gouda, and S. Lam. Secure Group Communications using Key
Graphs. InProceedings of ACM SIGCOMM ’98, pages 68–79, September 1998.
7.7

198

http://www.versustech.com

[132] C. Wullems, M. Looi, and A. Clark. Towards Context-aware Security: An
Authorization Architecture for Intranet Environments. InProceedings of First
IEEE International Workshop on Pervasive Computing and Communications Se-
curity(PerSec’04), pages 132–137, March 2004. 1.2.1, 2.3.1

[133] D. Yao, Y. Dodis, N. Fazio, and A. Lysyanskaya. ID-Based Encryption for Complex
Hierarchies with Applications to Forward Security and Broadcast Encryption. In
Proceedings of 11th ACM Conference on Computer and Communications Security
(CCS 2004), pages 354–363, October 2004. 6.4.3, 6.5, 7.3

[134] T. Yu and M. Winslett. A Unified Scheme for Resource Protection in Automated
Trust Negotiation. InProceedings of IEEE Symposium on Security and Privacy,
pages 110–122, May 2003. 6.6

[135] Y. Zheng, T. Hardjono, and J. Seberry. New Solutions to the Problem of Access
Control in a Hierarchy. Technical Report Preprint No.93-2, Department of Com-
puter Science, University of Wollongong, Australia, 1993. 7.7

199

	1 Introduction
	1.1 Privacy in Pervasive Computing
	1.1.1 Diversity in Service Administration
	1.1.2 Complex Information
	1.1.3 Derivation of Information
	1.1.4 Confidential Context-Sensitive Constraints

	1.2 Related Work
	1.2.1 Diversity in Service Administration
	1.2.2 Complex Information
	1.2.3 Derivation of Information
	1.2.4 Confidential Context-Sensitive Constraints

	1.3 Thesis Goal
	1.4 Contributions
	1.5 Guide To The Thesis

	2 Design of Access-Control Architecture
	2.1 Overview
	2.2 Access Policies
	2.2.1 Properties of Access Policies
	2.2.2 Access Rights

	2.3 Access-Control Architectures
	2.3.1 Centralized Access Control
	2.3.2 Service-based Access Control
	2.3.3 Client-Based Access Control
	2.3.4 End-to-End Access Control

	2.4 People-Location System
	2.4.1 Overview
	2.4.2 Access Rights
	2.4.3 Distributed Access Control
	2.4.4 Lessons

	2.5 Access Rights
	2.5.1 Information Representation
	2.5.2 Formal Model
	2.5.3 Implementation

	2.6 Distributed Access Control
	2.6.1 Access-Rights Storage
	2.6.2 Proof Verification
	2.6.3 Implementation
	2.6.4 Deployment

	2.7 Security Model
	2.8 Related Work
	2.8.1 People-Location Systems
	2.8.2 Information-Representation Schemes
	2.8.3 Access-Control Logics
	2.8.4 Trust-Management Systems

	2.9 Summary

	3 Information Relationships
	3.1 Overview
	3.2 Information Relationships
	3.3 Formal Model
	3.3.1 Bundling-Based Relationships
	3.3.2 Combination-Based Relationships
	3.3.3 Granularity-Based Relationships
	3.3.4 Example

	3.4 Discussion
	3.5 Global Information Relationships
	3.5.1 Delegation-Based Approach
	3.5.2 Naming-Based Approach

	3.6 Proof Building
	3.6.1 Bundling-Based Relationships
	3.6.2 Combination-Based Relationships
	3.6.3 Granularity-Based Relationships

	3.7 Implementation
	3.8 Performance Analysis
	3.8.1 Number of Access Rights
	3.8.2 Proof-Building Time
	3.8.3 Client-Response Time

	3.9 Proof-Carrying Authorization
	3.9.1 Overview
	3.9.2 Bundling-Based Relationships
	3.9.3 Combination-Based Relationships
	3.9.4 Granularity-Based Relationships
	3.9.5 Discussion

	3.10 Related Work
	3.11 Summary

	4 Derivation-Constrained Access Control
	4.1 Overview
	4.2 Background
	4.3 Derivation-Constrained Access Control
	4.3.1 Derivation-Constrained Access Rights
	4.3.2 Derivation Properties
	4.3.3 Access Control

	4.4 Formal Model
	4.5 Examples
	4.5.1 People Location
	4.5.2 Health Information

	4.6 Security Analysis
	4.7 Implementation
	4.8 Performance Analysis
	4.8.1 Measurements
	4.8.2 Discussion

	4.9 Related Work
	4.10 Summary

	5 Confidential Context-Sensitive Constraints
	5.1 Overview
	5.2 System Model
	5.2.1 Nature of Constraints
	5.2.2 Scenario
	5.2.3 Enforceability
	5.2.4 Staleness of Constraint Information

	5.3 Formal Model
	5.4 Constraints and Information Leaks
	5.4.1 Centralized Access Control
	5.4.2 Service-Based Access Control
	5.4.3 Client-Based Access Control
	5.4.4 Third Entity

	5.5 Access-Rights Graphs
	5.5.1 Design
	5.5.2 Centralized Access Control
	5.5.3 Service-Based Access Control
	5.5.4 Client-Based Access Control

	5.6 Hidden Constraints
	5.6.1 Design
	5.6.2 Formal Model
	5.6.3 Discussion

	5.7 Constraints and Information Relationships
	5.8 Architecture
	5.8.1 Overview
	5.8.2 Hidden Constraints
	5.8.3 Digital Certificates

	5.9 Performance Analysis
	5.10 Related Work
	5.11 Summary

	6 Obscured Proof-of-Access Descriptions
	6.1 Overview
	6.2 Requirements
	6.3 Obscured Proof-of-Access Descriptions
	6.3.1 Hierarchical Identity-Based Encryption
	6.3.2 Basic Operations
	6.3.3 Architecture
	6.3.4 Limiting the Search Space

	6.4 Discussion
	6.4.1 Identity-Based Encryption
	6.4.2 Forwarded Access Rights
	6.4.3 Information Relationships
	6.4.4 Confidential Constraints

	6.5 Prototype Implementation
	6.6 Related Work
	6.7 Summary

	7 Encryption-Based Access Control
	7.1 Overview
	7.2 Requirements
	7.3 Encryption-Based Access Control
	7.4 Complex Information
	7.5 Prototype Implementation
	7.6 Evaluation
	7.7 Related Work
	7.8 Summary

	8 Conclusions and Future Work
	8.1 Contributions
	8.2 Reflections
	8.2.1 Office Scenario
	8.2.2 Home Scenario

	8.3 Directions for Future Work
	8.3.1 Remote Discovery of Certificates
	8.3.2 Semantics for Access-Control Logic
	8.3.3 Semantic-Web Concepts
	8.3.4 Uncertainty in Access Control

	8.4 Summary

	A Hierarchical Identity-Based Encryption
	A.1 Operations
	A.2 Optimizations
	A.3 Evaluation

	Bibliography

